8-21-2017

Creating a Model and Professional Learning to Support the Design of Authentic Student Learning Tasks

Leah McConaughey
Lynn University

Paul Facteau
Lynn University

Follow this and additional works at: https://spiral.lynn.edu/etds

Recommended Citation

https://spiral.lynn.edu/etds/4

This Dissertation is brought to you for free and open access by the Theses and Dissertations Collections at SPIRAL. It has been accepted for inclusion in Student Theses, Dissertations, Portfolios and Projects by an authorized administrator of SPIRAL. For more information, please contact liadarola@lynn.edu.
Creating a model and professional learning to support the design of authentic student learning tasks

Leah McConaughey and Paul Facteau

Lynn University
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>4</td>
</tr>
<tr>
<td>COPYRIGHT</td>
<td>6</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>7</td>
</tr>
<tr>
<td>Statement of the Problem</td>
<td>9</td>
</tr>
<tr>
<td>Background</td>
<td>10</td>
</tr>
<tr>
<td>Dissertation in Practice Question</td>
<td>12</td>
</tr>
<tr>
<td>Definition of Terms</td>
<td>12</td>
</tr>
<tr>
<td>Significance of Dissertation in Practice</td>
<td>13</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>15</td>
</tr>
<tr>
<td>The Current State of Student Engagement and Performance</td>
<td>15</td>
</tr>
<tr>
<td>A More Effective Approach to Task Design</td>
<td>17</td>
</tr>
<tr>
<td>Engagement</td>
<td>18</td>
</tr>
<tr>
<td>Cognitive Complexity</td>
<td>23</td>
</tr>
<tr>
<td>Authenticity</td>
<td>26</td>
</tr>
<tr>
<td>Professional Development and its Impact on Teacher Task Design</td>
<td>28</td>
</tr>
<tr>
<td>Previously Established Frameworks</td>
<td>31</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>35</td>
</tr>
<tr>
<td>Participant Feedback</td>
<td>40</td>
</tr>
<tr>
<td>Analysis of Student Learning Tasks</td>
<td>42</td>
</tr>
<tr>
<td>Summary</td>
<td>45</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>47</td>
</tr>
<tr>
<td>APPENDIX A: Authentic Learning with Technology Model (ALTmodel)</td>
<td>53</td>
</tr>
</tbody>
</table>
Creating a Model and Professional Learning to Support the Design of Authentic Student Learning Tasks

This purpose of this dissertation in practice is to develop a learning/technology framework called the Authentic Learning with Technology Model, and six professional learning modules to help teachers design more authentic student learning tasks in their classrooms. Research shows that student academic performance increases when students are cognitively engaged in the classroom, which occurs when they experience challenging, authentic learning tasks. Learning frameworks, technology, and ongoing professional learning experiences can support teachers design authentic learning tasks when used effectively. Unfortunately, research demonstrates 1) schools rarely use consistent learning frameworks, 2) technology is limited to traditional teaching practices, and 3) professional learning is limited and ineffective.

The study population of interest is New York City public school K-12 classroom teachers, principals, and academic coaches. Participants experienced six in-session professional development modules accompanied by additional online support resources in an iTunes U course. Participants selected and redesigned examples of their own student learning tasks to increase the level of authenticity, in part by the use of technology. Tasks were collected to demonstrate levels of authenticity before and after the professional development. 12 out of 15 tasks (80%) increased authenticity from learning and technology perspectives, 2 out of 15 tasks (13%) stayed at the same level of authenticity, and 1 task (7%) decreased in authenticity.

Participants completed qualitative surveys to ascertain whether or not the professional development modules supported a shift in their thinking towards learning, technology, and authenticity of their tasks. A majority of participants found the ALTmodel effective in helping them rethink the extent to which their tasks engaged students in deeper cognition and effective technology use. Participants also felt the modules inspired them to
change their short-term and long-term practice with respect to designing more authentic student learning experiences that effectively incorporate technology.
CREATING A MODEL AND PROFESSIONAL LEARNING TO SUPPORT THE DESIGN OF AUTHENTIC
STUDENT LEARNING TASKS

McConaughey, Leah, Ed.D. Lynn University, 2017

Facteau, Paul A., Ed.D. Lynn University, 2017

© 2017, by McConaughey, Leah and Facteau, Paul A.
ALL RIGHTS RESERVED
CHAPTER 1

Purpose

The purpose of this dissertation in practice is to develop a framework and process with which teachers can design high-quality tasks to implement in their classroom. This work is premised on existing research which demonstrates that authenticity, engagement, and cognitive complexity are key characteristics resulting in higher levels of task quality (King, 2009; Weiss, 2004; Van’t Hooft, 2005; Larson, 2014; Barber, 2015; Wiggins, 1998; Koh, 2009), and that technology must be used as a tool to drive deeper cognitive complexity (Weston, 2010; Herrington, 2007; Jonassen, 1998; Salomon, 1991). When teachers systematically design lessons for authenticity, engagement, and cognitive complexity in conjunction with technology, they will be more likely to design higher quality student tasks.

Teachers and administrators should be guided by a commonly agreed-upon model of high-quality task characteristics in order to consistently design high-quality tasks for school or district populations. Numerous researchers and theorists have debated the characteristics of such tasks (King, 2009; De Stasio, 2009; Salomon, 1991), and in response educational frameworks have been created to provide systematic, structured approaches to task design (Weston, 2010). Burton’s (2011) analysis and synthesis of six frameworks for authentic assessment identified several common characteristics across all frameworks to describe high-quality tasks including “fidelity of task to the real world, [creation of a] polished product, higher order thinking seamlessly integrated with assessment, collaboration, [requiring] students to make judgements and choices, and complexity (Burton, 2011, p. 24).” This high-quality learning can be supported and propelled by technology when it is used as a cognitive tool to maximize engagement and achievement (Weston, 2010; Herrington, 2007; Jonassen, 1998; Salomon, 1991). Not only can frameworks lead to higher quality task design, but they can also lead to
systematic change across the larger learning organization. Studies have shown frameworks provide the necessary schema to create clarity and common conversation not simply within one individual teacher’s classroom but across a school’s or district’s teacher population (Weston, 2010; Van’t Hooft, 2005; Marion, 2015; Vasiljevic, 2011). Ultimately, if teachers are expected to design high-quality tasks to promote student engagement and academic performance they need a clear and common learning model and support in the design process.

Recent school reform initiatives have sought to address challenges of student engagement and performance by focusing on interventions from seat time and resource allocation to flexible scheduling and grouping. Technology has become a key component in many of these reform efforts (Bebell, 2010), but questions still remain about its long-term efficacy (Darling-Hammond, Zielezinski & Goldman, 2014). Research demonstrates technology is often used to simply replace traditional teaching and learning practices (Lam, 2012), rather than drive deeper cognition and creation (Darling-Hammond, Zielezinski & Goldman, 2014; Warschauer 2010).

An increasing number of states have adopted K-12 technology standards as many 21st century career paths will be influenced by or directly depend upon technology (“English Language Arts Standards,” 2016; “ISTE Standards,” n.d.). Schools have increasingly invested in student devices to provide a more comprehensive digital learning experience embedded within traditional classrooms. Teachers and administrators alike must consider how these devices play a role in supporting student learning through the intentional design of learning tasks, modern assessment, and collaborative experiences.
Statement of the Problem

Teachers’ myriad job requirements - writing lesson plans, designing assessments, and communicating with parents - are often taxing and overwhelming even for veteran teachers (Womack, Pepper, Hanna, & Bell, 2015). Teachers often want to engage in designing higher quality curriculum (Handal, 2003; Womack et al., 2015) that incorporates technology efficiently and effectively (Alismail, 2015), but struggle with where to begin. Schools must capitalize on teachers’ desires to improve learning tasks by providing them with explicit, systematic models and approaches to increase the effectiveness of their tasks. How can teachers design student-facing, high-quality tasks that align with their content standards and engage students in 21st century skill development?

Three primary issues prevent this systematic approach from happening. First, teachers often lack a framework to evaluate the characteristics of high-quality tasks, resulting in products that vary widely based on teacher interest, training, and the learning goals of the school ("The Three Essentials," 2016). If school districts have adopted a learning framework that addresses assessment, it reflects a more binary approach that simply acknowledges the existence, or lack thereof, of assessment aligned with standards ("Syracuse City School District Teaching and Learning Framework," "LAUSD Teaching and Learning Framework." 2012). Such an approach recognizes the importance of learning, but lacks the qualitative schema of a true learning framework. Second, teachers are often untrained on how to design high-quality tasks. Professional development typically consists of disconnected, fragmented, lecture-based experiences that do not resonate with teachers and their curriculum-design needs (John, 2006), often revolving around operational logistics, rather than systematic approaches to curriculum design (Darling-Hammond, 1999). Third, teachers have either limited access to technology, or they use technology absent or separate from learning (Jonassen, 1998; Herrington, 2007; Davies 2013). Lack of leadership and professional development, as well as a greater focus on distributing and managing devices rather than curriculum and instruction (Weston, 2010) lead to inconsistent classroom
adoption and negligible impact on student achievement and engagement. Unfortunately, teachers and administrators typically focus more on the functionality of technology rather than transforming learning with the device, which thereby masks the fundamental problem. Ultimately, these three challenges prevent teachers from systematically developing high-quality tasks for their students, thus limiting students’ overall engagement and academic performance.

Background

Numerous states have developed a common set of content standards deemed essential to the success of K-12 students across the United States. While there have been mixed reviews regarding the initiative, 42 of the 50 states and the District of Columbia have come to conclude that common agreement on standards are appropriate and have become members of the initiative (Standards In Your State, 2016). That said, the nation does not have a framework to help teachers interpret the degree of complexity expected within that content. Specifically within New York City, heightened teacher autonomy allows teachers to individually interpret the definition of a high-quality task. One of New York City’s principle challenges is the absence of a common framework for learning and technology integration. Schools have a common lens for teaching, as evidenced by the Charlotte Danielson Framework for Teaching (“Teacher Practice,” 2016), but lack both a systematic lens to focus teachers on the characteristics of high-quality tasks, as well as a systematic process for designing them. This is evidenced by the Curriculum and Instruction materials provided to teachers by the New York City Department of Education (NYCDOE), which are individual scopes and sequences, tactical activities (i.e. literature circles), and sample lesson plans (“Curriculum and Instruction,” n.d.). These individual resources provide teachers with helpful lists of content and activities, but lack a systematic framework that supports teachers to assess, select and design tasks based on quality measures. One exception to this approach lies within the NYCDOE Department of Science, Technology, Engineering, and Math (STEM), which recently released a qualitative
framework for embedding STEM principles in the school and classroom, specifically within assessment (Benn, n.d.). Unfortunately, the framework’s limited scope and application to STEM classrooms only abbreviates its influence across all traditional math, social studies, science, and English classrooms.

Recent school reform initiatives have sought to address challenges of student engagement and performance by focusing on numerous variables from seat time, resource allocation, and differentiation to flexible scheduling and grouping (“What We Do,” n.d.). This research focuses on the development of high-quality task design as numerous studies suggest an increase in task quality leads to an increase in student achievement as well as student engagement (Koh, 2009; King, 2009; De Stasio, 2009; Salomon, 1991; Finkelstein, Hanson, Huang, Hirschman, & Huang, 2010; Larson, 2014; Barber, 2015; Li, 2015; Lynn & Baker, 1996). Not only are students more engaged when presented with higher quality, more rigorous tasks, but they also perform better on both standardized and performance-based assessments. These higher quality and more rigorous tasks also have a positive impact on students’ perceptions of learning (Van’t Hooft, 2005; Finkelstein et al., 2010; Vasilijevic, 2011). Therefore, while myriad factors may play a role in transforming schools, this research focuses on task quality and the fundamental connection with student engagement and academic performance.

High-quality tasks involve students in authentic, engaging, and cognitively complex experiences (Burton, 2011). Authentic work meaningfully connects students with the content and context they will likely encounter outside of school. This work draws inspiration from and mirrors complex challenges and situations professionals experience in their daily work (Cydis, 2015; Wiggins, 1998; Shepard, 1996; Koh, 2009). Engagement provides an opportunity for students to connect with their work on a personal level, thereby driving ownership of their own learning process (Renninger, 2011). Technology can significantly impact the way students engage with their own learning process, from increasing their motivation and excitement, to helping them produce professional-level products to share with the outside community (Saulsbury, 2015). Cognitive
complexity requires students to independently select and apply learned content and skills to complex, unknown situations. Cognitively complex tasks require deeper levels of transfer and application than more straightforward, linear tasks do, and require students to draw upon a wider repertoire of knowledge and skills (Wiggins, 2011; Burton, 2011; Eddy, 2014). Ultimately, authenticity, engagement, and cognitive complexity are crucial design considerations for high-quality tasks, and must be included when designing tasks for increased student engagement and academic performance.

Dissertation in Practice Question

The analysis in this study will attempt to answer the following question: is teacher task design improved through the Authentic Learning with Technology (ALT) model and professional development? Based upon the research developed in Chapter 2 the authors designed the ALT model intersecting learning and technology frameworks, and a series of six professional development modules which support teachers in understanding and implementing the ALT model to design more authentic student learning tasks. Since academic culture is codified through commonly agreed upon frameworks (Van’t Hooft, 2005; Marion, 2015; Vasilijevic, 2011), this work examines the extent to which professional development supports teachers to design and implement high-quality local tasks in order to drive more authentic learning.

Definition of Terms

It is necessary to define several key terms to provide context for this analysis.
A teacher-designed task is any type of formative or summative assessment designed by the teacher and provided to the students to complete either during or outside of school. It does not include district-level, state-level, or diagnostic assessments.

A framework represents a cognitive schema through which teachers and school leaders can make meaning of discrete pieces.

A one-to-one is defined as each student having a personalized device specifically for use in that class as well as after school.

A high-quality task is defined as an authentic task that uses technology effectively to produce a polished, professional-level product.

Authentic tasks are those which demonstrate fidelity to a world outside of school, create a valued professional product, are inclusive of higher order thinking, collaborative, require judgment and choice, and are unstructured and non-linear.

Performance-based assessments are realistic, complex tasks that require analysis, strategy, and the use of a repertoire of skills to self assess and self-adjust.

Project-Based Learning is an approach to task and unit design that contextualizes learning within a task beyond traditional assessments, such as writing papers and taking exams. PBL units typically culminate in a performance-based assessment that requires students to apply learned content to a real situation or challenge.

Significance of this Dissertation in Practice

Many education theorists discuss frameworks for learning and technology, but most do so independent of each other. Studies that align learning and technology frameworks either 1) use Bloom’s taxonomy as a foundation (“Our Philosophy,” 2016; Moersch 2010) or 2) linearly align learning and technology, thereby implying that
high cognitive learning levels are always associated with high levels of technology, and low cognitive learning levels are always associated with low levels of technology (Puentadura, n.d.; Moersch, 2010). This study goes beyond previous work by simplifying the components to two axes - learning and technology - and providing a three-tiered learning framework based on Grant Wiggins’s Acquisition/Meaning Making/Transfer approach rather than Bloom’s verb-dependent, six-tiered framework.

This Dissertation in Practice and project is relevant for classroom practitioners, curriculum developers, building-level and district-level leadership including Superintendents and Assistant Superintendents of Curriculum and Instruction, as well as technology integrators. It will provide the foundational context and schema from which to design formative and summative student learning tasks that increase the level of academic rigor, while employing technology effectively to support and propel deeper learning.
CHAPTER 2

The Current State of Student Engagement and Performance

More than ever, American students see a disconnect between what they learn in school and what they encounter outside of school. In a 2011 national poll of over 7300 middle and high school students, an overwhelming 75.2% disagree with the statement that teachers make school work relevant and interesting to them (Wiggins, 2014). A straight ‘A’ student complained school “feels like going to a [restaurant] and only having one menu item and you have to eat it in a certain way or you fail (Wiggins, 2014).” Similarly, the 2010 High School Survey of Student Engagement found that 49% of high school students are bored every day, and 17% of students are bored every class (“Charting the path,” 2010). High levels of disengagement have had deleterious effects on student performance, causing one student to drop out of school every 43 seconds (NASBE, 2015).

In addition to low levels of engagement, various high school performance indicators such as qualitative survey feedback and standardized ACT scores suggest American high school students perform poorly and are inadequately prepared for college work (Gigliotti, 2012). According to the National Assessment of Educational Progress (NAEP) (2015), the average 12th grade student scored 152 out of 300 on the most recent math assessment, which is troubling for several reasons. First, this average 12th grade score in 2015 is not significantly different than the average score from 2005 (150) when the current math framework was introduced. Second, only 25% of 12th graders rated at or above proficiency, indicating that students can only directly apply concepts in familiar settings rather than demonstrate in-depth conceptual and procedural knowledge, including the ability to transfer this deep level of awareness to unfamiliar situations. Similarly in writing, the 2011 scores demonstrated significant underperformance, with only 27% of 12th grade students rated at or above proficient. In reading, the 2015 scores showed only 37% of students rated at or above
proficient (NAEP, 2015). According to the NYC College Readiness Index, which includes state tests, SAT, ACT, and CUNY (City University of New York) Achievement Test data (NYC DOE, 2016), not even half of New York City’s high school graduates are college ready, even though graduation rates have risen slightly in the past few years. CUNY data corroborates these results, revealing that 78.6% of incoming students need remediation in order to perform successfully on the collegiate level (CUNY, 2011).

Unfortunately, this ubiquitous student apathy and substandard academic performance are justified. An in-depth analysis of K-12 courses across the United States finds that American schools fall short of providing ideal high-quality mathematics and science education for students. Weiss’s (2004) in-depth study classified only 15% of K-12 mathematics and science lessons as high-quality, 27% as mid-level quality, and 59% as low quality. While most classroom content was considered accurate, significant, and worthwhile, fewer than one in five lessons were intellectually rigorous, included effective teacher questioning, or guided students appropriately in making sense of the lesson’s content. The same study found active student participation was also severely lacking in these classrooms. Active questioning techniques by the teacher, used specifically to monitor student understanding of new ideas and encouraging them to think more deeply, were found to be relatively rare in both math and science classrooms. In fact, teachers most often used low level fill-in-the-blank questions asked in rapid-fire fashion with an emphasis on getting the right answer and moving on, rather than helping students make sense of the concepts (Weiss, 2004; Weiss, Easley, Smith, Banilower, & Heck, 2003). Wiggins (2011) chastises the American education system for teaching facts and skills in isolation. The approach not only disengages students in the moment, but it prohibits long-term enduring understanding. This fact-based, content-driven, intellectually de-stimulating tasks do not adequately activate students within their own learning process, thus leaving them disengaged with the very concept of school.
This literature review provides an in-depth review of three primary characteristics of high-quality tasks -- engagement, cognitive complexity, and authenticity -- necessary to engage students and promote high levels of academic achievement. The review also discusses the importance of a framework to guide teachers in the design of such tasks. Finally, the review provides an overview of previously established frameworks regarding learning and technology, and reasons for selecting specific frameworks with which to work.

A More Effective Approach to Task Design

Prominent educators from Grant Wiggins (2008) to Tony Wagner (2008) to Robert Marzano (2002) assert the primary goal of schooling is to mirror the environment students will encounter outside of school, one based on complex thought, personalized interests, and authentic performances. In other words, school is not about what students know, but what students can do with what they know. Rather than assign students purely acquisitional, rote, paper-and-penel content, their daily work should be aligned to the overarching purpose of school and provide students with novel, complex, meaningful work that requires them to understand and apply authentic content in order to solve problems (King, 2009; De Stasio, 2009; Salomon, 1991). Similarly, when educators include resources such as technology into the classroom, they should not implement it simply to meet a requirement or facilitate traditional classroom practices. Rather, devices must guide students to use technology as a cognitive tool to support meaningful, authentic, transference which will maximize the impact on their own engagement and achievement (Weston, 2010; Herrington, 2007; Jonassen, 1998; Salomon, 1991). Three crucial aspects of task design are necessary to achieve this high level of quality: engagement, cognitive complexity, and authenticity.
Engagement

Student engagement consists of three distinct but related themes - behavioral, emotional, and cognitive - which are directly connected with observable school factors such as time on task, attitudes towards school, and motivation to complete work (Bundick, 2014; Fredricks, Blumenfeld, & Paris, 2004; Pintrich & De Groot, 1990; Helme, 2001). These fluid, interrelated themes must be considered simultaneously to provide an accurate description of student perceptions and attitudes towards their educational experience (Skinner & Belmont, 1993). Behavioral engagement, the extent to which students participate in academic and social activities, is typically distinguished by positive (engaged) and negative (disengaged) actions (Birch & Ladd 1997; Skinner & Belmont 1993). Engaged students exhibit behaviors such as regularly attending classes, raising hands and sharing thoughts during class, and participating in after school activities (Fredricks, Blumenfeld, & Paris, 2004). They select cognitively appropriate tasks, persist through difficult situations, initiate requests for support when necessary, and maintain a generally positive disposition throughout the learning process (Skinner & Belmont, 1993). Behaviorally disengaged students may skip school, not pay attention during class, or potentially distract other students. They may show little desire to partake in activities, and can become bored, frustrated, or even outwardly aggressive (Skinner & Belmont, 1993).

Most researchers distinguish only between engaged and disengaged behavior; however, Finn (1989) provides depth by describing various levels of positive engaged behaviors ranging from passive responses, such as willingness to respond to teacher questions, to more active, student-driven engagement such as voluntarily joining extracurricular activities after school. Student engagement is maximized when their attention and focus is clearly directed towards learning and self-propelled by intrinsic interest, rather than external reward (Renninger, 2011; Munns, 2006; King, 2009). Therefore, in order to maximize student behavioral engagement,
educators should carefully distinguish whether the actions are driven by intrinsic (student) or extrinsic (teacher) stimuli.

Most research studies employ qualitative data to determine student behavioral engagement (Fredricks, Blumenfeld, & Paris, 2004; Skinner & Belmont, 1993; Pintrich & De Groot, 1990; Helme, 2001). Qualitative observations may indicate levels of student behavioral engagement, but may also mislead educators to erroneous conclusions. Peterson, Swing, Stark, and Wass (1984) found teacher observations did not always demonstrate an accurate depiction of a student’s level of engagement during fifth grade math lessons; teachers observed that students were engaged in the work, when later students interviews proved otherwise. Conversely, some students were labeled off-task during observations, but in reality, they were engaged in the work and animatedly discussing the content. While behavioral engagement designations provide one lens of student interaction within school, educators must be careful not to mistake behavioral engagement for emotional or cognitive engagement. In addition, they should use multiple points of data to validate their conclusions.

Emotional engagement describes the connections developed and sustained with peers and adults within a school setting, manifested by both the quality and quantity of relationships (Fredricks, Blumenfeld, & Paris, 2004). These relationships may impact students’ reactions and emotions towards school (e.g., happy, sad, frustrated, bored) and how they identify with school (e.g., whether they feel they belong, whether they appreciate school and its value) (Fredricks, Blumenfeld, & Paris, 2004). Researchers typically measure motivational engagement using a qualitative survey which inquires about positive and negative emotions, general feelings about school and teacher, and the extent to which school is valued. Similar to behavioral engagement, emotional engagement may be difficult to measure since the nature of the emotion may not be specified or recognized by the student and the quality and intensity of the emotion may vary depending on the context of the question (Skinner & Belmont, 1993).
Students’ beliefs about themselves impact their level of emotional engagement, which ultimately impacts their level of academic success in school (Connell, Spencer & Aber, 1994). In fact, three emotional components - the level of parental support, students’ own perceived sense of self, and students’ emotional stability - impact academic outcomes more than their socio-economic status. Interactions with peers and teachers play an important role in helping children adjust to school both academically and socially (Birch & Ladd, 1997; Howes & Hamilton, 1992; Howes & Matheson, 1992; Lynch & Cicchetti, 1992; Pianta & Steinberg, 1992). If teachers develop strong relationships with students through open communication and rapport, students are more likely to have higher levels of emotional engagement and more positive attitudes about school. Conversely, teacher dependency and student-teacher conflicts negatively impact student attitudes toward school as well as academic performance. As such, it is crucial to consider students’ emotional engagement, as developed from self-perception and interaction with peers and teachers, when considering their potential academic success in school.

The third type of engagement, cognitive engagement, concerns the extent to which individuals invest their energy to develop and refine complex ideas and skills (Fredricks, Blumenfeld, & Paris, 2004). This includes students’ thoughtful, purposeful use of cognitive and metacognitive strategies, often referred to as self-regulated learning strategies, to further their own learning (Meece, Blumenfeld, & Hoyle, 1988; Blumenfeld, Mergendoller, & Puro, 1992). Students who are cognitively engaged plan and assess their work, use learning strategies to process and remember information, and maintain focus while minimizing distractions (Fredricks, Blumenfeld, and Paris, 2004). Students who are highly cognitively engaged demonstrate these behaviors to gain true mastery of the information, rather than simply completing their work. Students on the lower level of the engagement scale may demonstrate specific behaviors such as completing work and participating in class, but they may complete these acts simply to meet the minimum requirement of their school work. Students on the higher level of the effort scale may show similar behaviors, but their motivation is focused not on completing
the work, but gaining a true mastery of the information. Thus, educators should qualitatively distinguish between behavioral and cognitive engagement because their indicators could appear similar; this includes qualitative feedback from the students with respect to their strategies for problem solving, independent work styles, and ability to navigate failure and constructive feedback.

Corno and Mandinach (1983) developed a model of cognitive engagement which describes the highest level of student cognitive engagement as self-regulated learning, and the lowest level of cognitive engagement as recipience, or simple back-and-forth with teachers. This model parallels Finn’s (1989) behavioral engagement model in that the lowest levels of engagement are teacher-driven and the highest levels are student-driven. The distinction between the motivation to perform and motivation to learn is crucial when considering the relationship between behavioral and cognitive engagement. Studies suggest students demonstrate greater cognitive engagement when their behavior is motivated by learning rather than extrinsic rewards (Skinner & Belmont, 1993; Meece et al., 1988). Studies also found that high levels of behavioral engagement do not necessarily lead to high levels of cognitive engagement (Blumenfeld et al., 1992; Helme, 2001), thus reiterating the need for teachers to discern between behavioral and cognitive actions.

Several factors influence cognitive engagement: first, the individual student’s values, goals, and motivations; second, the culture of the learning environment to either hinder or promote student and teacher interactions; and three, the degree of complex, challenging, intrinsically interesting, and meaningful tasks in which students engage (Helme, 2001; Swing, Stoiber & Peterson, 1988; Clarke & Roche, 2010). With respect to the type of student work, Helme (2001) found that task characteristics such as novelty, context, and promotion of authentic connections, and students’ ability to make sense of meaning within a task, significantly influence their level of cognitive engagement. Students must be engaged in meaningful, authentic, challenging tasks to maximize their
level of cognitive engagement, which is crucial because it may directly impact their potential to enter, persist in, and complete post-high school academic work (Finn & Owings, 2006).

Educators can use various models of engagement to support them in developing more engaging tasks because the models provide a clear framework and process for task design (Larson, 2014; Newman et al., 2009). Hidi and Renninger (2011) created a Four-Phase Model of Interest Development to promote high levels of student engagement. Their model parallels the teacher/student ownership continuum developed by previous researchers (Corno & Mandinach, 1983; Finn, 1989), and describes the depth and development of interest as it progresses from situational, where the first spark of student interest develops, to individual, where students self-initiate and intensify their engagement. Teachers can apply such models in the classroom to design tasks that increase engagement for students who typically struggle to maintain interest (Larson, 2014). Similarly, Schlechty (2002) drafted ten design parameters to align tasks with high levels of student engagement, which help teachers design tasks to promote student self-motivation and the intrinsic desire to persevere through challenging, complex tasks (Bowen, 2003). Dietrich (2014) applied Schlechty’s engagement model to determine that students need tasks allowing control, choice, and authentic connections to fully engage them in learning. In each example, educators used an engagement framework to design tasks which encourage students to develop a deeper, sustained interest in what they are learning. Ultimately, increasing student engagement can be attributed to increases in academic performance, retention, matriculation and graduation from college (Bundick, 2014).

Technology may positively and negatively impact student engagement within the classroom. Technology may detract from student engagement by increasing the amount of time they spend on non-academic work (Zhu, Kaplan, Dershimer, & Bergom, 2011), decreasing student interest in class (Mann, 2008), or decreasing the extent to which they understand and remember course material (Fried, 2008; Hembrooke & Gay, 2003). However, technology may play a strategic role in promoting and transforming student engagement.
when used appropriately. Effective technology applications positively impact student engagement by promoting
ownership over content selection, learning process, and final product creation (Bebell & O’Dwyer, 2010).

Technology may also create more authentic opportunities for student work (Saulsburry, 2015), allow students to
increase class participation, motivation, and willingness to take on challenging information (Clark, 2015), and
allow for students’ self-discovery, self-pacing, and interest-driven learning (Barber, 2015). Overall, technology’s
impact on student engagement levels has both positive and negative implications; however, overall sentiment
appears that the most important consideration is not whether or not to use technology, but how to contextualize
its integration to align with a student-centered learning experience (Lam, 2012).

Cognitive Complexity

The human brain’s central structure of cognition, or knowledge, is its long-term memory. Long-term memory
stores multiple depths of information, from discrete facts and skills to cognitively complex understandings
necessary for solving problems (Kirschner, 2006). Various levels of cognitive functions are often referred to as
cognitive complexity or academic rigor (Marzano, Pickering, & McTighe, 2002; Wiggins, 2011; McCollister,
2010). Cognitive complexity manifests itself in the classroom through student tasks, questions, conversations,
and assessments (Matusevich, 2009; McCollister, 2010). While questions, conversations, and assessments are
all crucial aspects of curriculum and instruction, this study will focus on cognitive complexity within student
tasks.

Educators have developed learner-centered frameworks to distinguish between various levels of cognitive
complexity; Wiggins (2011) and Marzano, Pickering, and McTighe (2002) each describe a framework
articulating increasingly sophisticated levels of cognitive complexity centered around acquisition (basic facts
and skills), meaning making (contextualizing and connecting content in meaningful ways), and transfer
(independent application of content and skills to new situations). Transfer requires students not only to deeply understand basic facts and skills, but to apply that knowledge in authentic performances and novel situations that are non-linear and multi-faceted (Wiggins & McTighe, 2006). Higher levels of the frameworks maximize the functionality of human cognition by fluidly combining content acquisition with complex problem solving.

Cognitive complexity frameworks may support teachers to design tasks aligned with higher levels of cognitive complexity (Barber, 2015; Eddy, 2014; De Stasio, 2009; Finkelstein et al., 2010). Finkelstein et al., (2010) and Lynn and Baker (1996) echo Wiggins (2011) and Marzano, Pickering, & McTighe’s (2002) work by outlining several criteria for performance-based assessments (PBAs) which increase the level of cognitive complexity: content quality, curricular importance, and level of meaning. Both research groups describe teachers’ use of PBAs to move from linear, acquisition-based tasks to a problem-based approach where students develop a set of strategic analytic steps to transfer their knowledge to other situations. The PBAs allow students to identify solutions to authentic problems based on content and skills learned in class. Similarly, students in Project-Based Learning (PBL) environments solve authentic problems in a non-linear, self-directed, and collaborative approach instead of focusing solely on rote acquisition of facts and skills (Barber, 2015). Teachers used the PBL model to encourage authentic student self-assessment, shift cognitive responsibility to the students, and provide students with the autonomy to engage in problem-based learning experiences. Overall, cognitive complexity frameworks may provide teachers with the necessary structure and guidance to develop more challenging, rigorous, cognitively complex tasks.

Technology supports various levels of cognitive complexity within the classroom. It supports lower levels of learning with support for note-taking (Weston & Bain, 2010), organization (Bebell & O’Dwyer, 2010), and expression of basic understandings of content and skills (Herrington, 2007; Jonassen, 1998). Students who use technology simply to socialize and communicate may perceive technology as limited to lower-cognitive
activities. This may be detrimental to their overall learning process because students will not fully comprehend the power of technology as a learning tool (Li, 2015). Alternately, technology may play a key role in supporting increased cognitive complexity. Jonassen (1998) developed the concept of Mindtools, digital functions such as applications and software programs, to support students’ abilities to self-construct knowledge by manipulating content rather than consuming and regurgitating information (Jonassen, 1998). Learners use Mindtools to function as designers who analyze the world, access information, interpret and organize their personal knowledge and represent what they know (Jonassen, 1998). Mindtools actively engage learners in the creation of their own knowledge and allow them to generate thoughts that would be impossible without the tool.

Educators who strategically use technology to drive deeper cognition will support students to engage in more complex thinking.

Ultimately, students experience increased academic performance when engaged in higher cognitively complex tasks (Larson, 2014; Koh, 2009; Vasiljevic, 2014). Talley (2013) employed a STEM framework to design transfer tasks using technology and design tools to solve problems and promote innovation. Students performed significantly higher in STEM class than in prior classes where such learning techniques were not used, thus determining that cognitively complex, performance-based tasks are crucial to increased student performance. In addition, Finkelstein et al. (2010) found that a specific project-based approach demanding deeper student cognition led to greater student achievement and success on both traditional and performance-based measures, including their ability to problem-solve and apply knowledge to authentic economic situations. Larson (2014) found that students demonstrated qualitative and quantitative learning improvements when tasks were highly challenging and demanded complex thought. This research ultimately demonstrates that students’ academic performance and overall engagement increase when they complete tasks with higher cognitive complexity; therefore, teachers should design tasks that increase academic rigor in order to support better academic performance.
Authenticity

Authenticity describes appropriate, purposeful, and responsible connections to life. Authentic learning occurs in myriad places, from animal species in the wild who teach their young to hunt (Herrington, 2007) to human mothers who teach their young children to talk. Students in school may experience authentic learning through collaborative activities (Jonassen, 1991), teacher mentoring (Collins, 1989), authentic contexts (Brown, 1989), and authentic integrated tasks (Shepard, 1996). Newman (2001) developed the concept of Authentic Intellectual Work (AIW) to apply this concept to student work within a classroom. AIW requires students to construct their own process for learning, use disciplined inquiry, and ultimately create products that are valued outside the school. They must organize, interpret, and synthesize information, mimic professional content used in the field, and communicate effectively (King, 2009; Van’t Hooft, 2005). This concept parallels higher levels of cognitive complexity (Wiggins & McTighe, 2006) and cognitive engagement (Helme, 2001) by providing students with complex challenges they will likely encounter in a post-academic environment. Unfortunately, Newmann (2001) argues teachers typically provide low-performance, paper-based, traditional work which fails to meet students’ individual needs and interests, thus not engaging them in learning. Educators provide students with the content they need to cover, rather than challenging students to interpret and manipulate the material in authentic settings.

Splitter (2009) directly questions Newmann’s work by asking whether school and out-of-school alignment necessarily makes school work authentic. He argues that adults’ actions are not authentic simply because they occur outside of school. Additionally, Splitter states that simply connecting students’ prior knowledge with current theory and knowledge narrow-mindedly leads students towards predetermined answers. Ultimately, Splitter concludes that a small but significant modification must be made to Newmann’s model to provide truer authenticity; educators must convince students that what they learn fits into their own personal understanding of
the world, not just the world as general society views it. Therefore, even though Splitter raises questions about
the nature of authenticity and its alignment to a world outside of school, he still believes students should
consistently experience this type of work.

Kirschner (2006) questions elements of authentic learning by discussing the balance of direct instruction and
student-driven learning. Some educators argue that students realize the full power of learning when constructing
knowledge for themselves, and that teacher-driven instructional strategies interfere with students’ natural ability
to construct their own knowledge. Other educators argue that teachers should provide direct instruction to guide
students in their discoveries. Kirschner (2006) supports the latter argument because entirely student-driven
learning places an unnecessarily difficult cognitive load on students’ memories, thereby not optimizing the
learning process. Evidence has shown that minimally guided instruction is less effective and less efficient than
teachers who provide specifically designed guidance to support authentic learning processes. He argues the
inclusion of problem-solving and student-driven learning is positive, but to include them at the exclusion of
facts and knowledge is detrimental. Therefore, teachers must balance between authentic, student-driven learning
and appropriately-timed direct instruction.

Numerous educators have developed frameworks for authentic task development (Herrington & Herrington,
2006; Gulikers, 2006; Frey, 2007). Burton (2011) analyzed and synthesized several models to construct a
general list of six characteristics of authentic tasks: demonstrates fidelity to a world outside of school, valued
professional product, inclusive of higher order thinking, collaborative, requires judgment and choice,
unstructured and non-linear. The synthesized list supports teachers in analyzing the level of authenticity within
their tasks and identifying potential areas for improvement. These characteristics are similar to those discussed
in the previous engagement and cognitive complexity sections, reiterating the interwoven nature of the three
themes. The use of frameworks to increase authenticity may improve academic performance by furthering
students’ problem solving abilities (Kocyigit, 2013), increasing attention and motivation (Losada, Insuasty & Osorio, 2016), and deepening higher order thinking skills (Wenglinsky, 2001). However, the gains may be small and take time to develop (Shepard, 1996; Losada, Insuasty & Osorio, 2016).

Technology can be used at various levels of authenticity within the classroom. Lower levels of authenticity include efficient distribution of teacher-centered content such as videos, lectures, and homework (Clark, 2015), completion of homework (Dodson, 2014), and accessing online quiz grades (Dodson, 2014). Higher level examples build upon Newmann’s (2001) work and drive authenticity by 1) supporting a transition to project-based assessment, 2) capturing student learning in authentic products, and 3) sharing student work with the larger community (Barber, 2015; Cydis, 2015). Teachers can use technology to create more authentic learning environments which include a realistic context, authentic activities, access to expert models and several other key characteristics that can only truly be provided using technology. As a result, students may see greater connection with their surrounding world and ultimately become more engaged in learning.

Professional Development and its Impact on Teacher Task Design

Research demonstrates teacher attitudes and professional abilities directly influence the transformation of classroom practice (Hammond & Ingalls, 2003), the long-term sustainability of learning initiatives (Garet, 2001), and the impact of student academic achievement (Wei, Adamson & Darling-Hammond, 2010). In fact, students whose teachers were engaged in 14 or more hours of professional development performed significantly better on academic tasks than those whose teachers were engaged in only 5-14 hours of professional development (Wei, Adamson & Darling-Hammond, 2010). Those students whose teachers were engaged in professional development for 49-100 hours focused on a single theme demonstrated the highest levels of academic achievement (Wei, Adamson & Darling-Hammond, 2010). Professional development impacts student
achievement in a three-step process: 1) it enhances teacher understanding of knowledge and skills, 2) better understanding leads to improved teaching, and 3) improved teaching leads to an increase in student academic performance (Wei, Adamson & Darling-Hammond, 2010). Therefore, professional development indirectly impacts student outcomes through its influence on teacher, administrator, and parents’ knowledge and practice, all of which ultimately impact students’ cognitive abilities, behaviors, standardized test scores, and attendance (Guskey & Sparks, 2002).

Unfortunately, coherent, consistent, collective, and reform-minded professional development is lacking in the United States (Wei, Adamson & Darling-Hammond, 2010). Most professional development activities remain episodic updates of information delivered in a didactic manner, separated from engagement with authentic work experiences (Gravani, 2007; Hawley & Valli, 1999; Murrell, 2001). This decontextualization essentially disregards the value of ongoing and situated learning, thereby reinforcing the perceived divide between theory, or what you learn in a course and practice, or what you do at work every day. The argument against this predominant training model, that learning cannot simply be transferred in a discrete package, no matter how flexible or well designed, has been raised in the educational literature for more than a decade (e.g., Darling-Hammond, 1999; Hargreaves, 2003; Lieberman, 1995; Webster-Wright, 2009). Reports indicate that while beginner teachers with five or less years of experience participate in more professional development than in recent years, most teachers experience less ongoing sustained intensive professional development than they did in previous years (Wei, Adamson & Darling-Hammond, 2010). The decline of professional development intensity is noteworthy because teacher perception of professional development effectiveness, and its ultimately impact on student academic achievement, has been closely linked with intensity (Wei, Adamson & Darling-Hammond, 2010). United States teachers often experience single day workshops that are isolated in content and non-experiential, focusing heavily on singular tips and tricks aligned with short-term acquisition of strategies.
instead of promoting deeper understanding of practice (Garet, 2001). These one-time workshops are ineffective and have little to no impact on student academic performance (Darling-Hammond & Falk, 2013).

Alternately, effective professional development is continuous, active, social, and related to practice (Garet, 2001; Wilson & Berne, 1999). Teachers should experience PD activities that increase knowledge of new academic content, positive attitude towards self, students, and academic content, skill development, and the ability to consistently transfer content and skills learned towards own classroom (Joyce, 2002). PD effectiveness depends on content, process variables, and context (Guskey & Sparks, 2002). Content characteristics include constantly evolving academic information, skills, and specific pedagogies to teach particular content (Guskey & Sparks, 2002). Process variables include how PD activities are planned, organized, facilitated, and followed-through (Garet, 2001). Activities should stress the importance of active learning and include alternative forms of PD such as coaching, action research, demonstration, and modeling (Joyce, 2002; Louis & Miles, 1990). Demonstration and modeling, when combined with acquiring knowledge or skills, is more impactful than acquiring knowledge or skills in isolation (Joyce, 2002). Studies found that teacher transfer to their own classroom is significantly increased when coaching is added as part of the training experience, but not significantly increased when additional content is added (Joyce, 2002). Teachers who are coached develop greater skill more frequently than others who had the same initial training; they experiment and share findings more quickly, show increased long-term retention and refined their abilities to offer flexible, nuanced classroom practices, explain new teaching models to students, thus increasing students’ own metacognition, and demonstrate more awareness of purpose of new strategies (Joyce, 2002).

Context characteristics include how teachers are grouped, when and how often they meet, and the larger context of how and why they will use the information they encounter (Joyce, 2002). Experiences should focus on problem-based, student-centered, inquiry-focused learning leading towards the development of more
performance-based assessments like projects and open-ended design constructs (Darling-Hammond & Falk, 2013). Overall, more progressive PD features long-term collaboration, alternative ideas and methods, and is grounded in student thinking, curriculum, and pedagogy. Sustained, intensive PD impacts teacher knowledge and skills, seamless integration of practice into school goals, and collective participation and coherence (Garet, 2001).

Joyce (2002) suggests several design characteristics when planning effective professional development, such as forming collaborative groups, identifying a collective problem to solve, and providing structured time to monitor implementation and measure impact. This collaborative inquiry process should include inter-visitations, collaborative research, and ongoing reflection, which are more responsive and have a greater potential impact on changing teaching practice. The professional development conversations should occur over time to give teachers opportunities to practice and receive feedback on their new strategies (Garet, 2001). This personalized, teacher-driven professional development model is crucial because it requires teachers to identify the crux issue and ways to solve it, identify resources to solve the problem, and decide upon their own final solutions. Ultimately, this supports teachers to actively collaborate to solve genuine problems within their professional practice (Boud & Middleton, 2003; Burbank & Kauchak, 2003; Lave & Wenger, 1991; Lieberman & Miller, 2001; Oakes & Rogers, 2007; Webster-Wright, 2009).

Previously Established Frameworks

Learning frameworks are crucial to support teachers in developing high-quality student tasks. Krathwohl (1992), Marzano, Pickering, & McTighe (2002), Webb (1997), and Wiggins (2011) have developed frameworks that describe depths of learning from basic procedural content and skills to increasingly complex applications of content. Lower levels require basic knowledge and skill acquisition and result in more linear, fact-based
learning. Middle levels require students to connect facts and skills, and understand the impact they have on each other. Increases in complexity result from the ability to link seemingly discrete information to form generalizations that can be applied to other situations, other subject areas, and the outside world (Marzano, Pickering, & McTighe, 2002). Facts and knowledge are not minimized, but rather given purpose, direction, and context. Deeper levels of learning, also called cognitive complexity, require students to independently apply their understanding of facts and skills to new, non-routine, complex situations. At this level students do not simply memorize facts and skills, nor do they just make connections between those facts and skills in a larger context. Rather, they transfer facts and skills to unique, novel, multi-faceted situations (Marzano, Pickering, & McTighe, 2002). Wiggins (2011) argued the importance of intentionally teaching all three levels at any given time in order to maximize student learning; however, the flow of learning and structure of tasks should not necessarily follow the same order as they progress in their complexity. Essentially, learning should not begin with acquisition even though it is not as cognitively demanding. In general, all four learning frameworks similarly support educators to understand the progression from basic to more complex learning, and thus may significantly impact the structure and process with which teachers design student tasks.

Krathwohl (1992) and Webb (1997) differ from Wiggins (2008) and Marzano, Pickering, & McTighe (2002) in several significant ways that influence task design. First, they assign hierarchical value to individual cognitive processes. The original and revised Bloom’s Taxonomy (Krathwohl, 2002) offers six levels of cognitive complexity such that a student cannot engage in a higher level until she successfully masters the one(s) below it. This may negatively impact the breadth of teacher task design by requiring students to remain in the fact-based, de-contextualized levels without ever being exposed to the higher cognitive levels (Wiggins, 2008).

Second, Bloom and Webb assign each level with one or more verbs to guide teachers in articulating the types of task appropriate for each level (Webb, 1997; Krathwohl, 2002). Unfortunately, teachers may select verbs and
ultimately design tasks randomly rather than purposefully, without proper articulation and teaching support for each nuanced skill (Yamanaka & Wu, 2014). Third, Bloom’s and Webb’s taxonomies place significant effort on the cognitive level of the final product, but not the context within which that product is created. Their highest cognitive levels emphasize specific thought processes, but do not emphasize authentic, performance-based, engaging, authentic situations in which those thought processes should occur (Krathwohl, 2002). Students may make connections between various skills and content, but they may not yet transfer that knowledge within an authentic, performance-based, engaging situation. Therefore, while Bloom’s and Webb’s focus on cognitive complexity, the study focuses on Wiggins’ Acquisition/Meaning Making/Transfer framework; the latter describes a progression of cognitive complexity while maintaining the importance of authentic, engaging contexts, which the research above has shown critical to increasing student engagement and academic performance.

Just as various learning models directly inform and influence the design of student tasks, technological models influence the incorporation of 21st century technology resources. Several learning frameworks identify essential conditions for effective technology implementation (Mishra & Koehler, 2006; Shulman, 1986). Mishra & Koehler (2006) designed The Technological Pedagogical Content Knowledge (TPACK) model to emphasize technology’s place in support of content and pedagogical knowledge. Few teachers possess the requisite knowledge or experience to effectively incorporate technology into their classrooms, even though schools have continued to increase the amount, quality and connectedness of the technology (Sahin, 2011). Teachers often see pedagogy, technology and content as discretely separate (Niess, 2005) so TPACK’s unified approach is crucial. TPACK is a foundational component for teachers’ pedagogical development (Angeli and Valanides, 2005; Koehler et al., 2007); without a framework that considers the interplay between the domains, teachers may consider technology an insignificant addition to teaching and learning (Pierson, 2001), instead of designing high-level learning tasks utilizing appropriate and effective technology (Koehler et al., 2007). TPACK
recognizes the unique and interactive roles that content, technology, and pedagogy play in authentic teaching and learning environments and suggests the consideration of a new form of knowledge extending beyond content, technology and pedagogy alone (Mishra & Koehler, 2006).

Ruben Puentedura (2009) provides qualitative depth to TPACK’s synthesized approach with his Substitution, Augmentation, Modification, Redefinition (SAMR) model. The SAMR model depicts a vertically aligned four-layer model of technology use, moving from substitution to redefinition, the highest level where technology allows for the creation of new tasks that were previously inconceivable (Puentadura, 2006). SAMR provides unique depth to the technology component of the TPACK framework, but remains disconnected from cognitive complexity and pedagogy, which may cause further difficulty in implementing technology effectively (Niess, 2005).

Several models attempt to align learning with technology while also showing depths within each category. Puentadura (n.d.), the International Center for Leadership in Education (2016), and the Levels of Teaching Innovation (LoTi) Framework all align SAMR with Bloom’s Taxonomy; unfortunately, in each instance SAMR is aligned with Bloom’s Taxonomy, and is done so in a direct, one-to-one approach indicating that lower levels of technology are always paired with lower levels of learning, and higher levels of technology are always paired with higher levels of learning. This correlation may mislead educators to incorrectly assume learning and technology are always explicitly linked when in reality, one may reasonably find examples of high levels of learning with no technology, or low levels of learning with transformative technology.
In order to shift student engagement and academic performance it is imperative to drastically shift the types of learning tasks students experience. Schools must transform their current model of rote content acquisition to one of transfer within complex situations that incorporate technology in meaningful and intentional ways. This Dissertation in Practice focuses solely on task design, specifically, the quality of teacher-designed types students engage with on a daily basis. The proposed framework called the Authentic Learning with Technology Model (ALTmodel) provides a lens on how educators should design and structure tasks so students are more rigorously prepared academically for the complex challenges they will encounter after their K-12 experience (Appendix A). This framework intersects Wiggins’ AMT learning framework with Puentadura’s SAMR framework, thus asserting that technology must act not as an independent goal, but a tool to drive higher cognitive complexity.

The framework is accompanied by six professional development modules which support teachers and principals to reflect upon their current task design, shift their thinking using the ALTmodel framework, and support them to design new tasks with higher cognitive complexity and more sophisticated uses of technology. The proposed professional development modules were crafted around the design considerations outlined in Chapter 2: forming collaborative groups, identifying a collective problem to solve, and providing structured time to monitor implementation and measure impact. The professional development modules took place over a series of collaborative, experiential, and process driven in person sessions supported by interactive online resources collated in an iTunes U course. This format provided both synchronous, challenge-based conversations as well as consistent access to asynchronous models and resources. Teachers and principals did not engage in singular exposure to best practices; rather, participants worked with colleagues to develop a collaborative community of practice by asking probing questions and challenging each other to improve. Participants dove deeply into a singular question around task design over a series of several sessions, with time
to experience and learn the concept in the context of a professional learning community. Participants also had opportunities to transfer their learning to their own situation within the context of the larger group, thus increasing the likelihood of permanent change.

The product consists of an asynchronous, online iTunes U course supplementing six in-person professional development sessions during which participants learned how to design authentic tasks by effectively integrating technology with deeper learning (Appendix B). Participants designed their tasks using the Authentic Learning with Technology model framework (ALTmodel) which intersects Grant Wiggins’ Acquisition/Meaning Making/Transfer (AMT) framework (Wiggins, 1998) with Ruben Puente’s SAMR technology framework (Puentadura, 2006). AMT demonstrates a progression of increased cognitive complexity situated in authentic, meaningful performances (Wiggins, 1998), whereas other frameworks define cognitive complexity as discrete verbs/processes absent of larger context (Webb 1997, Krathwohl 2002). SAMR is a widely-used technology framework that describes not just the presence of technology, but the depths of technology (Puentadura, 2006). This model relates back to the question “Can teacher task design be improved through the ALTmodel framework and professional development?” because it demonstrates engagement, authenticity, and cognitive complexity are crucial components of teacher-designed tasks that along with effective technology implementation, can be used to increase student engagement and academic performance (Jonassen 1998, Bebell & O’Dwyer 2010, Larson 2014, Newman et al., 2009, Finkelstein et al., 2010, Lynn & Baker 1996).

Principals and teachers were trained during six 5-hour, in-person professional development modules, offered once per month for six months, on the concept of the ALTmodel and how to design student-learning tasks with deeper learning and more sophisticated technology. In-person modules were offered once a month for six months to provide a regular cadence of conversation, reflection, and learning throughout the majority of the school year, avoiding all testing and holiday vacations. In-person modules were supported with online resources
compiled in an iTunes U course which were accessed at any time. Participants attended the in-person professional development modules in order to have access to the online resources. Overall, the in-person sessions provided teachers with an overview of the ALTmodel framework as well as hands-on, personalized training on how to design tasks in their respective grade levels and subject areas. Each category of learning (acquisition, meaning making, and transfer) and technology (substitution, augmentation, modification, and redefinition) were analyzed so participants were comfortable with the concept and vocabulary of the framework. Participants were supported in understanding the process of designing tasks for each of these levels, largely based on Grant Wiggins’ Understanding by Design approach (Wiggins, 2011). This approach delineates the various levels of learning and stresses the idea of designing backwards from the deepest level of learning - transfer - instead of focusing solely on basic acquisition. Participants also received basic training on the functionality and use of the device so they were comfortable navigating the tools and designing tasks that incorporate technology. The technology introduced not only replicated students’ typical tasks such as taking notes and reading textbooks, but supported teachers’ understanding of how the device can be used to deepen cognitive complexity and transform learning in their own classrooms. This ties back to research which demonstrates technology is most effective when used to deepen learning instead of simply to replace pen and paper (Herrington, 2007; Barber, 2015).

In preparation for the modules, the principal created a compelling understanding for the need to change. The principal articulated a clear motivation for teachers to improve learning opportunities for all students. The principal also collected artifacts to share with his/her staff so the staff can create their own sense of urgency and agency. The principal identified trends by looking at data such as student and teacher attendance, student and teacher perceptions of school, academic performance, teacher evaluations, and sample tasks. The principal created a school goal around how task redesign through the ALTmodel can align with current initiatives and
goals within the school. During this preparation time, the principal identified whether or not the entire staff or a small subset of teachers will participate in the professional development.

The goals of the first module, *Inspire*, are to 1) develop empathy for students around their current experience and 2) articulate the desired school experience for all students. Teachers and principals asked the questions: What does it mean to be a student in our school? What do educators want students to experience? How do educators want students to feel? During the session, teachers/principals empathized with students to better understand individual needs, strengths, and motivations, and identified the characteristics of ideal school environment based on needs of identified students. By the end of the session teachers/principals had a common articulation of what they feel classrooms should look like based on the mission/vision of their school, including the type of work students should be engaged in.

The goal of the second module, *Rethink*, is to shift conceptual understanding of task development with respect to authenticity and technology. Participants asked the question: How can educators build common conversations around task design with authentic learning and technology? During the session, participants analyzed sample school tasks to determine characteristics of innovative and traditional tasks, evaluated where individual tasks fall on the ALT model with respect to learning and technology, and identified school-wide, grade-level, and content-area trends regarding task design characteristics. By the end of the session participants had a common understanding and conversation regarding depths of authentic learning and technology, as well as an ability to effectively interpret tasks and discern between high/low levels of authentic learning and technology.

The goal of the third module, *Reflect*, is to enable participants to evaluate current depths of authenticity and technology within classroom tasks using a common framework. Participants asked the question: Where are our own tasks on the ALT model learning/technology framework? During the session, participants applied the
ALTmodel to their own task design and conduct norming activities to create common agreement regarding ALTmodel concept and language. By the end of the session teachers reflected upon and interpreted their own tasks, discerning between high/low levels of authentic learning and technology, and created a school-wide distribution of selected tasks on authenticity/technology scale.

The goal of the fourth module, Model, is to infuse practices from other schools to help inspire and guide task development. Participants asked the question: What practices can educators learn from other schools? During the session participants reviewed and evaluated other schools’ sample tasks and learning models, discerned which practices are most applicable to achieving their vision, and determined which practices they may adopt and how. By the end of the session participants understood how the current state of their tasks differs from their ideal vision of what their classroom tasks can and should look like with respect to authenticity and technology.

The goal of the fifth module, Design, is to increase the authenticity of student learning tasks through the use of effective technology. Participants asked the question: How can I apply the framework and models to redesign my students’ learning tasks? During the session participants learned an approach for authentic task design, then applied that approach to their own tasks. By the end of the session participants had detailed before and after depictions of their task redesign.

The goals of the sixth module, Implement & Refine, are to develop confidence in participants’ implementation in their own learning environment, and improve practice based upon learnings from previously implemented tasks. During this school-based PD session participants asked the questions: What practices have educators systematically implemented in our classrooms? What ongoing support do educators need? During the personalized, site-specific session, the authors visited teachers and principals in their school environment, and supported them in implementing and evaluating their next steps. This included additional modeling, leading
walkthrough, task analysis, or planning. Details for all modules including agendas, keynote presentations, and materials can be found in the iTunes U course entitled “Authentic Learning with Technology.”

Participant Feedback

In order to test the potential efficacy of this professional development series, a group of principals, academic coaches, and teachers from nine New York City public schools provided qualitative feedback on each of the sessions. Principals, academic coaches, and teachers were identified as the expert group because they are the intended audience for whom the professional development was designed. All teachers represented either traditional content areas (math, English, social studies, science) from grades 9-12, irrespective of alignment with a New York State Regents Exam, or any K-6 teacher with a focus on any content area. All teachers were selected by the school principal to participate in this professional development. All teachers had a minimum of three years teaching experience with no extra curricular activities such as department chair or athletic coach. All principals and academic coaches had a minimum of three years in their current New York City school.

The participants experience each of the first five modules and provided qualitative feedback by answering the following four questions after each module (Appendix C):

1. Did the session help transform your thinking? If so, how?
2. What part of the session could have been improved to help you transform your thinking?
3. What kind of follow-up would you like to see as a result of today’s session?
4. How might your practice change as a result of today’s conversation?

Many participants found the ALTmodel effective in helping them rethink the extent to which their tasks engaged students in deeper cognition and effective technology use. One participant wrote “I found [the] idea of SAMR and UBD clarified and put in a more simple form to help us analyze whether or not we are meeting "rigorous" standards.” Another wrote “Vetting our tasks and forming an approach to let students get a chance to do their
own inquiry rather than tell or showing them what it do. Also, examining how to make learning transformative to apply to the real world.” A third wrote “The way to think about how to structure tasks and assignments was especially useful.”

In addition, many participants felt the modules inspired them to change their short-term and long-term practice with respect to designing more authentic student learning experiences that effectively incorporate technology. One participant wrote “I want to get back to helping people evolve their use of technology to help them move their students up the learning scale.” Another wrote “[I will] design purposeful assignments based in acquisition, meaning making and transfer model.” A third wrote “I am inspired to get back to the classroom and continue to think of ways to take my lessons to the transfer level.” A fourth wrote “[I will change] how I plan lessons in respect to SAMR and authentic audiences.”

Participants felt the modules could have been improved by providing more time, a wider array of examples from other schools, and additional technology apps and functions. One participant wrote “[I wanted] more time for onion peeling activity to thoroughly give and receive feedback on the CBL Challenge.” Another wrote “Perhaps another example or two of how other schools are using it who have gone through this process.” A third wrote “What other apps can be used to integrate and enhance technology for curriculum purposes - it would have been helpful to have more time to practice using new technology.” A fourth wrote “It would be great to find a structured way to capture some of the work we do during the session using the tools available on the iPad so that by the end of the sessions we have digital artifacts from all of the days.” The authors will incorporate the feedback into our revisions to provide participants with more time, models from other schools, and experience with the devices.
Analysis of Student Learning Tasks

In addition to qualitative feedback, during Module 5 learning tasks were collected and rated on the ALTmodel to determine if there is an increase in the authenticity of learning and/or the depth of technology use. The ALTmodel was divided into six sections, each with a corresponding rating of 0-5, based on its level of authenticity and technology (Appendix D). The first column (Acquisition) is less authentic because it includes basic facts and skills isolated from authentic applications and transfer of skills. The top level receives a score of 0 because it represents sophisticated technology without deep learning; in other words, the depth of technology is not aligned with the depth of authenticity. The bottom level receives a score of 1 because there are low levels of authenticity and low levels of technology; the depths of authenticity and technology are aligned, but they are low.
The second column (Meaning Making) is slightly more authentic because students make connections between what they are learning and the outside world, but there is no transfer of skills to a larger, authentic challenge or problem. The bottom level receives a score of two because there is more complex thinking and authenticity, but no sophisticated technology aligned to that thinking. The top level receives a score of three because there is more complex thinking and levels of authenticity aligned with more sophisticated technology.

The third column (Transfer) is most authentic because it requires application of content and skills to solve legitimate problems identified by students. The bottom level receives a score of four because there is the most complex thinking and levels of authenticity, but no sophisticated technology to support it. The top level receives a score of five because it shows the most complex thinking balanced with sophisticated technology.

Participants brought original student learning tasks to the session, then redesigned the tasks to increase authenticity by increasing depths of learning and technology. By the end of the session, participants had detailed depictions of their initial and redesigned tasks. 15 redesigned tasks were anonymously collected and rated by the authors using the ALTmodel (Appendix E). Ratings were compiled in a table to determine if there was a change in the level of authenticity and/or learning (Appendix F). Responses were compiled and reported anonymously so as not to identify individual participants or schools. Participants’ answers are confidential and the records of this qualitative data will be kept private. In any sort of public report, the authors will not include any information that will make it possible to identify participants. Data records will be kept in encrypted files and only the researchers will have access to the records. There are no benefits to participants other than the professional development and associated support in developing learning tasks.

12 out of 15 tasks (80%) increased authenticity from learning and technology perspectives, 2 out of 15 tasks (13%) stayed at the same level of authenticity, and 1 task (7%) decreased in authenticity. For task 13, which
decreased in authenticity, the designers started with a task that was low level in both learning and technology. Students were given paper nametags introducing them to the other students. They present information about themselves such as background information, family, and interests to the other students in the class. Based on the ALTmodel this was given a score 1 because it was low levels of learning with no technology. The teachers redesigned the task such that students create QR codes, a website, or a wiki page to house this information. The task decreased in designation from a 1 to a 0 because the designers modified the level of technology but did not increase the level of authentic learning.

For task 12, which stayed at the same level of authenticity, the designers changed specific elements of the task and added technology, but the level of learning stayed the same and the technology served to enhance, not transform, the task. In the initial task students were asked to read Mary Shelley’s Frankenstein, complete a chapter review packet and then write an essay. Based on the ALTmodel this was designated a 2 because it was at a meaning making level of learning and had no technology. In the revised task the designers added technology such as a video conference and a blog, but the technology did not significantly modify the task. The level of learning did not change, so the designation remained a level 2 on the ALTmodel.

For task 9, which increased in authenticity, the task increased in its level of learning as well as sophistication of technology. In the initial task students were asked to summarize a book and write five paragraphs, which was given the designation of a level 2 on the ALT model because it is at the meaning making level of learning but with no technology. In the revised task the designers increased the level of student choice, authentic audience, and cognitive complexity of the task by asking students to not only read the book, but convince others to read it based on a student-designed pitch. Based on the ALTmodel this was designated as a 5 because the task increased from a meaning making level to a transfer level, and more sophisticated technology was included to significantly modify the task.
Summary

The initial results of the study suggest the ALTmodel and professional development supports teachers, coaches, and principals to redesign student learning tasks which increase authenticity and the effectiveness of technology. The majority of participant-identified tasks transformed from lower to higher levels of learning, engagement, and authenticity, as well as lower to higher levels of technology sophistication. This is significant because the ALTmodel and professional development provided teachers with a unified, concrete approaching for designing and evaluating authentic student learning tasks.

The professional development supported participants to change their mindset and design deeper learning tasks incorporating technology. The majority of participants felt the modules changed their understanding of how to evaluate and design a student learning task with higher levels of cognitive complexity and more sophisticated technology. Almost all constructive feedback centered around needing more time and examples from other schools to gain a better understanding of how to apply this work. Approximately one-quarter of participants provided specific, logistical suggestions such as group management and app requests that will be incorporated into future iterations of the professional development modules. Overall, the modules provided a solid professional foundation for task redesign based on the positive feedback they received.

In this study we demonstrated this model and professional development supported changes in educators’ understanding, mindset, and ability to design authentic tasks. The sample size of participants as well as redesigned tasks was small but significant due to the quantity of positive results received. Further qualitative and quantitative research could be designed in order to conduct a deeper analysis of the impact of the ALTmodel and accompanying professional development on the design of authentic student learning tasks. Further studies should continue to focus on core content areas such as math, English, social studies, and science,
and include teams of teachers, coaches, and administrators to provide balanced conversation between various stakeholders. They may also compare the intended curriculum, as planned in these professional development modules, with the enacted curriculum that is actually implemented in classrooms. Finally, further studies could examine samples of student work and compare the levels of authenticity, cognitive complexity, and technology use in the original and redesigned tasks.
REFERENCES

ID Number: 18330, Date Accessed: 8/18/2016

Proposals to Improve Success Rates For Students in Developmental Education at CUNY (Rep.). (2011, August 1). Retrieved August 10, 2016, from CUNY website: http://www.cuny.edu/about/administration/offices/ue/cue/ReportoftheRemediationWorkingGroup8-11.pdf

APPENDIX A: Authentic Learning with Technology Model (ALTmodel)
APPENDIX B iTunes U Course Sample Images

In Session: Sep 22, 2016 – May 12, 2017 Created: Mar 22, 2017 Updated: Mar 24, 2017
Instructor: Leah McConaghey & Paul Facteau Department: School Transformation

Teachers play a fundamental role in designing learning tasks for their students to engage in both within and outside of class time. Even if these tasks are inspired from colleagues or found in a database, teachers must often select how they spend their class time and what specific activities students must complete. In this design role teachers are challenged with addressing the demands of their content area standards while at the same time engaging and preparing their students for the realities of the 21st century; thus, they oftentimes strive to create engaging, meaningful, authentic tasks. In addition, since many of the these 21st century career paths depend upon technology, schools have increasingly invested in devices to increase student access in order to complete these learning tasks.

In order to consistently design high quality tasks across a school or district population, teachers must be provided guidance to discern the characteristics of a high quality task such as authenticity, engagement, and transference. Such learning can be supported and propelled by technology when it is used as a cognitive tool to maximize engagement and achievement. Not only do frameworks lead to higher

Module 4: Model

Agenda

1. Farm-to-School Challenge: experience a learning task from a student’s point of view (**could experience Phone Booth Challenge as well)**
2. Small groups present their work. Group debriefs the experience and characteristics of the task.
3. Participants look through samples of what other schools are doing to design their tasks. In small groups, analyze and evaluate practices, making note of specific elements they may want to adopt.

Assignments (3)

- Review experiential challenges
- Review images from sample experiential c...
- Review sample tasks and models from oth...
<table>
<thead>
<tr>
<th>Module 1</th>
<th>Module 2</th>
<th>Module 3</th>
<th>Module 4</th>
<th>Module 5</th>
<th>Module 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students felt that the session helped them think about their goals.</td>
<td>Very useful was the pair-up activity.</td>
<td>Students felt that exploring how our goals can be achieved through technology was helpful.</td>
<td>Students loved the explanation of the SAMR model and its application in real-world scenarios.</td>
<td>Students felt that the hands-on experience with various devices provided a deeper understanding of how technology can enhance learning.</td>
<td>Students enjoyed looking at the examples of student work and how they incorporated technology into their lessons.</td>
</tr>
<tr>
<td>Students felt that planning and evaluating their goals using Excel was quite useful.</td>
<td>I found the examples of student work to be very insightful.</td>
<td>Students liked how the information focused on the integration of technology into the classroom.</td>
<td>Students appreciated the explanation of the SAM-R framework for designing technology-integrated lessons.</td>
<td>Students felt that the vision of how technology can be used in education was particularly clear.</td>
<td>Students liked how the information focused on real-world examples and how technology can be used in the classroom.</td>
</tr>
<tr>
<td>Students felt that the use of different apps in the classroom was very helpful.</td>
<td>I also enjoyed using the various apps we were exposed to.</td>
<td>Students felt that the information focused on the integration of technology into the classroom.</td>
<td>Students felt that the activity of arranging the tasks on an iMovie was very engaging.</td>
<td>Students appreciated the explanation of the SAM-R framework for designing technology-integrated lessons.</td>
<td>Students felt that the vision of how technology can be used in education was particularly clear.</td>
</tr>
<tr>
<td>Students felt that the use of different apps in the classroom was very helpful.</td>
<td>Students felt that the use of different apps in the classroom was very helpful.</td>
<td>Students felt that the information focused on the integration of technology into the classroom.</td>
<td>Students felt that the activity of arranging the tasks on an iMovie was very engaging.</td>
<td>Students appreciated the explanation of the SAM-R framework for designing technology-integrated lessons.</td>
<td>Students felt that the vision of how technology can be used in education was particularly clear.</td>
</tr>
<tr>
<td>Students felt that the use of different apps in the classroom was very helpful.</td>
<td>Students felt that the use of different apps in the classroom was very helpful.</td>
<td>Students felt that the information focused on the integration of technology into the classroom.</td>
<td>Students felt that the activity of arranging the tasks on an iMovie was very engaging.</td>
<td>Students appreciated the explanation of the SAM-R framework for designing technology-integrated lessons.</td>
<td>Students felt that the vision of how technology can be used in education was particularly clear.</td>
</tr>
<tr>
<td>Students felt that the use of different apps in the classroom was very helpful.</td>
<td>Students felt that the use of different apps in the classroom was very helpful.</td>
<td>Students felt that the information focused on the integration of technology into the classroom.</td>
<td>Students felt that the activity of arranging the tasks on an iMovie was very engaging.</td>
<td>Students appreciated the explanation of the SAM-R framework for designing technology-integrated lessons.</td>
<td>Students felt that the vision of how technology can be used in education was particularly clear.</td>
</tr>
</tbody>
</table>
Today's session?
You like to see a follow-up would be?
What kind of videos that other groups make and have them?
I would like to see the GLCs.
To see how other schools.
Module 1
More work on newsletter iPad use over PCs? or visa versa
Detailed use of Apple products.
A brief review of what we covered.
Creating a course on iTunes U
Today and I look forward to use iPads in the classroom.
I would like more practice with iTunes U
Apps I can use in my class.
Become more familiar with course
I'd like to learn more about iTunes.
Feel confident when using it.
Learning so we can bring it into the classroom.
And use what we are learning.
How to find them.
More apps that people find interesting.
More apps that people find necessary.
I've been a PC user for so long that I feel very much for them.
I want to know what standards/expectations are.
Would you like for there to be one in our schools?
We would like for there to be one.
More on how we build our own curriculum.
More apps for the Apple technology into my school.
Please put me in touch with any options.
Having support staff come into the classrooms.
Want to try to get my history can be challenging.
For specific subjects like history.
Technology in the classroom?
I'm very much interested.
More work on how to incorporate technology.
More apps for the school.
More work on how to engage students.
We need a more extensive list of resources to have students.
Would have additional instructor time on the various apps that are available with the tablets.
If it is possible help to find out what is going on so we can acquire Parks for our school.
We are hoping what type of apps will be helpful and how the support will be transferred.
Our Catherine method for sharing the project.
More professional development.
More work on what mix of instructional approaches.
More apps or website that can be used.
More on how we build our own curriculum.
More apps that people find interesting.
More apps that people find necessary.
I would like to see more apps on our application for our school.
Module 2-3
Module 4
Module 5
Module 6
More work on newsletter iPad use over PCs? or visa versa
Detailed use of Apple products.
A brief review of what we covered.
Creating a course on iTunes U
Today and I look forward to use iPads in the classroom.
I would like more practice with iTunes U
Apps I can use in my class.
Become more familiar with course
I'd like to learn more about iTunes.
Feel confident when using it.
Learning so we can bring it into the classroom.
And use what we are learning.
How to find them.
More apps that people find interesting.
More apps that people find necessary.
I've been a PC user for so long that I feel very much for them.
I want to know what standards/expectations are.
Would you like for there to be one in our schools?
We would like for there to be one.
More on how we build our own curriculum.
More apps for the Apple technology into my school.
Please put me in touch with any options.
Having support staff come into the classrooms.
Want to try to get my history can be challenging.
For specific subjects like history.
Technology in the classroom?
I'm very much interested.
More work on how to incorporate technology.
More apps for the school.
More work on how to engage students.
We need a more extensive list of resources to have students.
Would have additional instructor time on the various apps that are available with the tablets.
If it is possible help to find out what is going on so we can acquire Parks for our school.
We are hoping what type of apps will be helpful and how the support will be transferred.
Our Catherine method for sharing the project.
More professional development.
More work on what mix of instructional approaches.
More apps or website that can be used.
More on how we build our own curriculum.
More apps that people find interesting.
More apps that people find necessary.
I would like to see more apps on our application for our school.

Module 3

How might your practice change as a result of today's conversation?

- We are updating our district challenge bowl activities to make them more in line with 21st century goals for our students.

 | I need to be more of a facilitator. |
 | I will definitely collaborate with other teachers that are using technology. |
 | As an administrator, I’d love to encourage teachers to try these things in their classrooms. |
 | I am making it a goal to take at least one lesson a marking period to the transfer level. |
 | I am inspired to get back to the classroom and continue to think of ways to take my lessons to the transfer level. |
 | Design purposeful assignments based in acquisition, meaning making and transfer model. |
 | Honestly, I’m not quite sure. |
 | I want to move more of my lessons to the “transfer” stage. |
 | I will aim to transfer, but remember that it’s not a daily event. |
 | Not a classroom teacher, but I am taking away ideas for my colleagues. |
 | Although the information was overwhelming, I will try to implement a few of the strategies throughout the rest of this year and continue to build on them over time. |
 | Revise teacher education presentations to include ideas presented today. |
 | I will try to visit “Disney” more often. |
 | Include more technology! |
 | Trying to get my lessons to “M” and “R” (Modification and Redefinition) on the SAMR model. |
 | More tech components and transferring. |
 | I think more teachers might be willing to try the activities when they see the SAMR and AMT framework. |
 | Model more SAMR |
 | I will certainly incorporate more iTunes U into our district. |
 | This forces me to relax a little in a sense that everything I do in my classroom does not necessarily need to be in the transfer phase. But, at the same time, allows me to visually assess where my lesson is currently. |
 | I want to get back to helping people evolve their use of technology to help them move their students up the learning scale. |
 | I will be thinking more about acquisition, meaning making and transfer. |
 | Integration of iPad in one to one district. |
 | I will begin by perusing a few of the One Best Thing books as well as changing some of my upper grade lessons, when possible. |
 | This was an affirmation of the direction our school and district are moving. I am encourage about where we are! |
 | How I plan lessons in respect to SAMR and authentic audiences. |
 | at the middle school, our teachers are going to explore iTunes you and adding math and science curriculum to their iTunes courses. thank you for such an amazing day and a great workshop! |
 | I will be more inclined to create an iTunes U course for my students to follow. |
 | Maybe use iTunes U to flip the classroom. |
 | Enormously. |
 | implementing some of the new software I learned and also trying to be mindful of the SAMR model graph that was displayed throughout the day. |
APPENDIX D: ALTmodel with Ratings

<table>
<thead>
<tr>
<th>Substitution</th>
<th>Acquisition</th>
<th>Meaning Making</th>
<th>Transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redefinition</td>
<td>Sophisticated technology without deep learning</td>
<td>More complex thinking and sophisticated technology</td>
<td>Most complex thinking balanced with sophisticated technology</td>
</tr>
<tr>
<td>Modification</td>
<td>Rote, isolated content acquisition</td>
<td>More complex thinking, no sophisticated technology to support</td>
<td>Most complex thinking, no sophisticated technology to support</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>
Theme: Ancient Architecture

Initial Task

Make posters depicting the architecture of ancient Egypt.

Final Task

Complete a case study on the pyramids using the question “How were the pyramids built?” to address five controversial issues: source of the design, source of the materials, time to completion, method of transportation of materials, and contents of the chambers.
Theme: Geometry

Initial Task

Observe and measure various school buildings and record data.

Theme: Geometry

Final Task

Design a “School of the Future” with scale drawings and models, taking into account the site and anticipated needs. Present plan to an audience of school officials or community experts.
Theme: Presidential Policies

Initial Task

Research three US Presidents from the 1700s, 1800s, and 1900s. Create a table and identify the major policies of their administrations.

Theme: Presidential Policies

Final Task

Research a US President from the 1700s, 1800s, and 1900s to investigate the question “How has Presidential policy changed to meet the needs of today’s world?” Create a podcast for each President, their key policies, and how their policies align to the current administration, and how they would fare in the current world in which we live. Stream the podcast out via iTunes U.
Theme: Nutrition

Initial Task

Locate and read articles about nutrition. Select a diet that would contribute to a healthy lifestyle.

Theme: Nutrition

Final Task

Research the basic food groups to understand basic dietary needs. Visit a nutritionist either face-to-face or via Skype at the Food Network to identify balanced meals that could be turned into a publication for developing a more healthy lifestyle. Create an ePub cookbook that includes recipes, and health tips for distribution to the school community.
Theme: Water Conservation

Initial Task

Create posters around ways to save water in the home and school.

Final Task

Visit the local public water utility to learn where our water comes from and where it goes. Identify water waste issues in the community and working with the water service find ways to help conserve water. Create a video for local cable access and pamphlet PSA campaign to raise awareness.
Theme: Voting

Initial Task

Create a mock election of the candidates involved in the current primary process. Have students vote, tally the votes, and report the results.

Theme: Voting

Final Task

Identify the candidates involved in the current primary elections. Students should select a candidate, research their platforms, and represent the candidate in a series of debates. Students should also create a commercial for their candidate for the school website, then hold a mock election.
Theme: Climate Change

Initial Task

Watch the movie, “An Inconvenient Truth” and write a report about climate change.

Theme: Climate Change

Final Task

Document the effects of climate change in your community via interviews. Use local, regional, and national climate data from NOAA and other sources to reconcile your findings and report the results to a wider audience. Create a children’s book on climate change that can be used with elementary students.
Conservation

1. Identify problem (self-directed)
2. Research
 - Online
 - Skype-organization (Torracycle)
 - Interview local experts
 - Current examples of improvements

Connecting
 - Solutions (self-choice)
 - Modifications

Designed by Name
Original Task: Book Report
 • Summarize the book
 • Write 5 paragraphs

Revised Task:
 • Give students a few choices of books
 • Have students create a "pitch" as to why the book should be picked for the entire school to read

 • Students have choice for the final project presentation (i-movie, keynote, etc.)
 • Authentic audience: present to the principal (maybe have the whole school vote)
Before
* Student choice
* Students were given questions ??
* Student research - books, library 📚
* Reports were hand written or typed 📄📝
* Presented to classmates and teacher only
* Independent work 🤔

Dinosaur Project

After
* Student choice
* Student generated questions 💡
* Student resources - internet, face-time, dinosaur train videos 🐘🕒
* Reports used multimedia (explain everything, power point, keynote, create YouTube video, embedding face-time video) 🎥
* Shared with future classes, YouTube videos/channel
* Cooperative learning - completed as a group 🤔💡
Before

1. B.O.R

2. Present to Class

3. Board of Ed

After

1. B.O.R

2. BCS + Gibby

3. Voted

4. BCS Gibby

5. B.O.E
TASK 1 (BEFORE)

- Read \rightarrow complete CAPT review packet
- **Assessment:** Test & Essay

TASK 1 (AFTER)

- Read M.S. - FRANKENSTEIN (ebook)
 - Participate in a blog class
 - Assess: Create criteria for organ recipients & apply to 5 case studies
 - Video conference w/ an expert
 - Assessment: Rubric

Benefits:
- Blog created a voice for otherwise shy or intimidated students
- Compare created criteria vs. personal vs. AMA
- Authentic audience
Before

Paper Nametags
Teacher Created

Award Stickers
Charlie Bells

After

QR Codes/tattoo

• Student Generated
• Leads to Student
Use of Student
Mentors to
Create Website
• Blogs on student
Website
• Videos of: Rube
Goldberg Contraptions,
Interviews, Selfies,
Small Group, Wiki Page,
Screen Cast Video
Before Task

- Write a personal narrative using relevant details, well-structured event sequences, and effective techniques.

Tech Element: (Augmentation)
- Google Docs w/ peer editing + teacher feedback

Audience:
- Class + Teacher

Purpose:
- Connect w/our class Community
- Demonstrate mastery of CCSS 7.3

Revised Task - Phase 2

- Revise your personal narrative content for online publish on a multi-modal website that serves as a resource for members of the school community on how to upload the 7 pillars.

Tech Element:
- Google Doc w/ peer editing + teacher feedback
 + Choice tech, publish on school community website
 - Myrl-style podcast
 - YouTube videos
 - Ted, TED-Ed style
 - Blog post

Audience:
- Whole school community, resource for restorative justice

Purpose:
- Connect w/our whole school community and other RJ schools in the world
- Utilize our tech skills for redefine publish
- Demonstrate an ability to transfer our CCSS 7.3 mastery skills to a new format.
BEFORE

Task: To understand what is Global Warming?
Do Now: Watch a video clip
Activity: Answers the questions related to the video.
1) What is Global Warming?
2) Why is Global Warming bad?
3) What countries contribute the most to Global Warming?
4) What is the greenhouse effect?
5) How much CO2 is already in the atmosphere?
6) What is the any temperature right now?

Summary: Create a foldable, write a title, picture and textbook info about Global warming.

AFTER

Do Now: Do you agree w/ President Trump’s opinion on Global Warming.
Post your opinion on Today’s Meet, after reading the article

1. CO2 Emissions
2. Deforestation
3. CFCs
4. Horizon Animals
5. Conference w/ industry experts

Defense Stance - You have a meeting at the United Nations using your data that you have researched (ibook) and presenting a resolution plan by surveying survey opinions/thoughts.
<table>
<thead>
<tr>
<th>Task #</th>
<th>Pre-treatment score</th>
<th>Post-treatment score</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>Increase</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>5</td>
<td>Increase</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>Increase</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>Increase</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>Increase</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>3</td>
<td>Increase</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>5</td>
<td>Increase</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>3</td>
<td>Increase</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>5</td>
<td>Increase</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>2</td>
<td>Increase</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>1</td>
<td>Same</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>2</td>
<td>Same</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>Decrease</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>5</td>
<td>Increase</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>3</td>
<td>Increase</td>
</tr>
</tbody>
</table>