MITIGATING CADMIUM TOXICITY ON PLANARIAN HEAD REGENERATION

By Natalie Gonzalez

48

CADMIUM - Cd

What is it?

• Toxic heavy metal

What does it do?

 Induces the production of reactive oxygen species and oxidative stress (Wu et al., 2011)

Effects:

- Organ damage
- Respiratory and reproductive toxicity
- Neurological defects
- Cancer

Common Sources

(Rolera LLC, 2023)

REACTIVE OXYGEN SPECIES - ROS

Free Radicals

Unstable molecules with an unpaired electron

REACTIVE OXYGEN SPECIES - ROS

(Wikimedia Foundation, 2024)

REACTIVE OXYGEN SPECIES - ROS

(Wikimedia Foundation, 2024)

Oxidative Stress

Imbalance between ROS production and the cell's ability to repair damage

Cell with Oxidative Stress

(Gonzalez, 2024)

Antioxidants	NAC
 Prevent oxidation Hunt free radicals Reduce the damaging effects of metal exposure 	 Directly interacts with radicals, donating electrons and converting them to water Enhances enzymatic activity in the cell

(Wikimedia Foundation, 2024)

PLANARIA

What are they?

• Free-living freshwater flatworms

Characteristics:

- Primitive nervous system
 - Ocelli (eyespots)
 - Auricles (chemoreceptors)
- Susceptible to harmful chemicals and drugs
- Regeneration

Species:

• Girardia dorotocephala

NORMAL PLANARIAN HEAD REGENERATION

Score	Tail Fragments
0	Death
1	Fresh amputation
2	Wound contraction has occurred
3	Wound has closed
4	Pale stump has formed
5	Ocelli spot formation
6	Complete formation of two ocelli
7	Auricle formation
8	Complete auricle formation on
	each side of the head
9	Partial pigmentation
10	Full pigmentation in all of the body
11	Complete regeneration

(Gonzalez, 2024)

WHY IS THIS IMPORTANT?

Health Implications:

• Essential in preventing and treating associated health risks • Impaired wound healing, tissue damage, organ dysfunction, etc

Environmental Concerns:

- Metal pollution is a major environmental issue
 - Contaminates our soil, water, and air
 - Impacts the health of our ecosystems

WHAT WE KNOW

• Limited research on the the relationship between Cd and antioxidant exposure on regenerative capabilities of G. dorotocephala

RESEARCH QUESTIONS

- What is the effect of Cd exposure on *G. dorotocephala*?
- Can antioxidant exposure help stop the buildup of ROS and promote tissue regeneration in planaria?

RESEARCH **HYPOTHESIS**

• Exposure to $CdCl_2$ will block head regrowth by ROS production, however, NAC and MitoTEMPO will reduce the harmful effects and restore normal planarian regeneration

Overproduction increases oxidative stress

Cephalic Regeneration

ANTIOXIDANT TREATMENT

24 hr Antioxidant Pretreatment 10 µM NAC IOS Water 5 µM 10 µM NAC + CdCl₂ 5 µM CdCl₂ Amputation Tail fragments in 6-well plate

Observations via stereo microscope and camera

Score	Tail Fragments
0	Death
1	Fresh amputation
2	Wound contraction has occurred
3	Wound has closed
4	Pale stump has formed
5	Ocelli spot formation
6	Complete formation of two ocelli
7	Auricle formation
8	Complete auricle formation on each side of the head
9	Partial pigmentation
10	Full pigmentation in all of the body
11	Complete regeneration

Planaria scored everyday for twoweeks

NAC

Kruskal-Wallis Test: * p<0.001 ∞ p<0.0046 n=24-28 per treatment

MitoTEMPO

NAC

Kruskal-Wallis Test: * p<0.001 ∞ p<0.0046 n=24-28 per treatment

MitoTEMPO

NAC

Kruskal-Wallis Test: * p<0.001 ∞ p<0.0046 n=24-28 per treatment

MitoTEMPO

NAC

Kruskal-Wallis Test: * p<0.001 ∞ p<0.0046 n=24-28 per treatment

MitoTEMPO

NAC

Kruskal-Wallis Test: * p<0.001 ∞ p<0.0046 n=24-28 per treatment

MitoTEMPO

NAC

Kruskal-Wallis Test: * p<0.001 ∞ p<0.0046 n=24-28 per treatment

MitoTEMPO

NAC

Kruskal-Wallis Test: * p<0.001 ∞ p<0.0046 n=24-28 per treatment

MitoTEMPO

DISCUSSION

Antioxidant partial rescuing response:

- NAC
 - Enzymatic activity helped regulate the cell's natural defense and detoxification system
 - Hunted ROS snd reduced oxidative damage

Variation among trials: • Control groups exhibited stress • Antioxidant Exposure 5 μM CdCl₂ exhibited stress Average regeneration score was very low

- Alternative mechanisms may have taken place

• MitoTEMPO

- Targeted ROS in the mitochondria
- Protected mitochondrial function for cellular energy in tissue regeneration

throughout the two weeks

SPONTANEOUS DROPPING TAILS

(Gonzalez, 2024)

What is it?

Potenital Causes: • Disruption in signaling pathways • Dysregulated injury response Delayed tissue regeneration

• Form of asexual reproduction • Defensive tactic against unfavorable environmental conditions (Ward's Science, 2005)

SPECIES DIFFERENTIATION

A

E

 \mathbf{F}

(Gonzalez, 2024)

FUTURE WORK

ROS Scavenging:	Planar
 Fluorescence microscopy 	• Pre
 Directly visualize interactions between 	0
ROS and neutralizing molecules	• Rur
 Biochemical assay 	0
 Measure ROS levels and check how well 	
neutralizing agents reduce harm	
caused by them	

'ia:

- cise speciation
- Genetic testing
- trials at the same time
- Reduce the risk of any seasonal
- sensitivity

IMPORTANCE

Our results underline the effects of CdCl₂ and antioxidants on regenerative processes to ongoing research in regenerative biology

Offers potential avenues for the development of novel therapuetic interventions

Improves public health outcomes

ACKNOWLEDGEMENTS

Lynn University: College of Arts and Sciences

Mentor: Dr. Cassandra Korte

Committee Members: Dr. Erika Doctor

Dr. Alanna Lecher

Planarian Research Group: Alexis Galindez

Logan-Marie Torry

Jonathan Newman

Anden Velez

REFERENCES

Calevro, F., Filippi, C., Deri, P., Albertosi, C., & Batistoni, R. (1997). Toxic effects of aluminium, chromium and cadmium in intact and regenerating freshwater planarians. Chemosphere, 38(1), 245. https://doi.org/10.1016/s0045-6535(98)00483-4

Chan, J. D., & Marchant, J. S. (2011). Pharmacological and Functional Genetic Assays to Manipulate Regeneration of the Planarian Dugesia japonica. Journal of Visualized Experiments, (54). https://doi.org/10.3791/3058

Unsal, V., Dalkiran, T., Çiçek, M., & Kölükçü, E. (2020). The role of natural antioxidants against reactive oxygen species produced by cadmium toxicity: A Review. Advanced Pharmaceutical Bulletin, 10(2), 184–202. https://doi.org/10.34172/apb.2020.023

Working with Planaria. (2005). Ward's World. Retrieved March 17, 2024, from <u>https://wardsworld.wardsci.com/biology/working-with-planaria-guide</u>

Wu, J.-P., Chen, H.-C., & Li, M.-H. (2011). The preferential accumulation of cadmium in the head portion of the freshwater planarian, Dugesia japonica (platyhelminthes: Turbellaria). Metallomics, 3(12), 1368. https://doi.org/10.1039/c1mt00093d16

QUESTIONS?

Thank you!

