
Al's Carbon Shadow: An Exploration of the **Energy Dilemma and Earth's Future**

Olga Roussos Lynn University Student Research Symposium April 19th, 2024

Overview

- As artificial intelligence continues to advance, more processing power and energy usage are required.
- Al's growing energy consumption can have severe negative impacts on global climate, biodiversity, sustainability, as well as marginalized communities and developing countries.
- Technological innovation can foster increased efficiency and greater knowledge and understanding; *however*, measures must be put in place to protect our planet.

Importance & Relevance

- 1) Becoming widespread and expanding rapidly
- 2) Energy-intensive
- 3) Potential to cause extensive damage to the environment

Research Proposal Questions

- 1) How will AI's current and projected energy consumption contribute to global energy demand and carbon emissions?
- 2) What are the environmental impacts of AI on developing countries versus developed countries?
- 3) What sustainable practices can be implemented in the development of AI to reduce energy usage while allowing for advancement?

Carbon Impact: Training LLMs

The carbon footprint of training a single large learning model (LLM) is estimated to contribute **300,000 kilograms of carbon emissions** to the Earth's atmosphere (Dhar, 2020, p. 423).

This is compared to the carbon emissions of **125 round-trip flights from New York to Beijing, China** (Dhar, 2020, p. 423).

Al's Computational Growth

"The computations required for deep learning research have been doubling every few months, resulting in an estimated 300,000x increase [in computations] from 2012 to 2018.

These computations have a surprisingly large carbon footprint" (Schwartz et al., 2020, p. 54).

GPT-3: Energy Usage & Emissions

After calculating the energy usage and carbon footprint of several LLMs , it was determined that training GPT - 3 required 552 metric tons of a CO2 equivalent (tCO2e) and consumed 1,287 Megawatt hours (MWh) (Patterson et al., 2021, p. 7) .

This is the equivalent of **123 gasoline - powered passenger vehicles driven for one year** (Scientific American, 2023, para. 5).

Potential Environmental Impact

- Strained water resources (Berreby, 2024)
 "Google's data centers consumed about 5 billion gallons (nearly 20 billion liters) of fresh water for cooling."
- Intensified habitat loss (Cowls et al., 2023)
 This surge in carbon emissions can cause increased ocean acidification and land degradation, leading to the destruction of marine and land ecosystems.

Decreased quality of life (Ritchie et al., 2023)

Assuming Al's development continues at this rate, humans can anticipate worsened air quality, more frequent natural disasters, lower quality crop yields, higher overall temperatures, and increased disease.

Proposed Methodology

1) Gather secondary data from "AI Report."

 The Artificial Intelligence Index Report, published by Stanford University in 2023 2) Run a simple linear regression on the data.

- Look at factors including Talent, Infrastructure, Research, & Development
- Determine which factors are more pronounced throughout different countries

3) Split data into four subsets based on UN Development Index.

 The four subsets are Developed, Developing, Least Developed Countries, and Land Locked Developing Countries

*Hypothesis – ROI for AI is generally higher in developed and developing countries.

Anticipated Results

- Exacerbation of inequalities between developed and developing countries
- Land degradation within developing regions due to extraction of critical minerals
- Direct negative environmental impacts to developed nations based on frequent usage of AI and more rapid AI development

Bottomline

- Artificial intelligence development will have advantages and disadvantages for both developed and developing nations.
- Al's development (if unmanaged) is likely to have a greater adverse impact on developing nations.

Discussion

What can we do to reduce energy usage while allowing for advancement in artificial intelligence?

1) Use power-capping hardware to limit the energy consumption of AI training and inference (Castro, 2024).

2) Optimize AI software and models by using techniques such as model pruning and sparsity (Castro, 2024).

3) Leverage AI to improve the energy efficiency of data centers that power AI systems, e.g., Google DeepMind's work on reducing data center cooling energy (Evans & Gao, 2016).

Future Research Directions

- The environmental and social impacts of mining raw materials used in the development of AI
- Al's impact on human rights issues
- The impact of e-waste from AI development on the environment
- How energy usage from AI development influences the frequency of natural disasters

Acknowledgement

Dr. Ellen Ramsey – Faculty Sponsor

Professor Joseph Ingles – Project Inspiration

References

Berreby, D. (2024, February 6). As use of A.I. soars, so does the energy and water it requires. Yale School of the Environment. https://e360.yale.edu/features/artificial-intelligence-climate-energy-emissions

Castro, D. (2024, January 29). Rethinking concerns about AI's energy use. Center for Data Innovation. https://www2.datainnovation.org/2024-ai-energy-use.pdf

Cowls, J., Tsamados, A., Taddeo, M. et al. (2023) *The AI gambit: leveraging artificial intelligence to combat climate change—opportunities, challenges, and recommendations*. AI & Soc 38, 283–307. <u>https://doi.org/10.1007/s00146-021-01294-x</u>

Dhar, P. (2020, August 12). The carbon impact of artificial intelligence. Nature Machine Intelligence 2, 423–425. https://doi.org/10.1038/s42256-020-0219-9

Evans, R. & Gao, J. (2016, July 20). *DeepMind AI reduces google data centre cooling bill by 40%*. Google DeepMind. https://deepmind.google/discover/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-by-40/

Kyriakopoulou, D. (2023, July 4). *What opportunities and risks does AI present for climate action?* The London School of Economics and Political Science. <u>https://www.lse.ac.uk/granthaminstitute/explainers/what-opportunities-and-risks-does-ai-present-for-climate-action/</u>

Meleshenko, K. (2023). *AI Global Index* [Data set]. Kaggle. <u>https://doi.org/10.34740/KAGGLE/DS/3185040</u> OpenAI. (2024). <u>*ChatGPT*</u> (4) [Large language model]. <u>https://chat.openai.com</u>

Patterson, D., Gonzalez, J., Le, Q., Liang, C., Munguia L.-M., Rothchild, D., So, D., Texier, M., Dean, J. (2021, April 21). Carbon emissions and large neural network training [Book]. arXiv. <u>https://arxiv.org/ftp/arxiv/papers/2104/2104.10350.pdf</u>

Ritchie, H., Rosado, P., Roser, M. (2023). CO₂ and greenhouse gas emissions. OurWorldInData.org. <u>https://ourworldindata.org/co2-and-greenhouse-gas-emissions</u>

Saenko, K. (2023, May 25). A computer scientist breaks down generative AI's hefty carbon footprint. *Scientific American*. <u>https://www.scientificamerican.com/article/a-computer-scientist-breaks-down-generative-ais-hefty-carbon-footprint/</u>

Schwartz, R., Dodge, J., Smith, N. A., & Etzioni, O. (2020). Green AI. *Communications of the ACM*, 63(12), 54–63. <u>https://doi.org/10.1145/3381831</u> Stanford University. (2023). *Artificial intelligence index report 2023*. <u>https://aiindex.stanford.edu/wp-content/uploads/2023/04/HAI_AI-Index-Report_2023.pdf</u> UN Development Programme. (2024). *Human development report overview 2023/2024*. <u>https://hdr.undp.org/system/files/documents/global-report_document/hdr2023-24overviewen.pdf</u>

Appendix

		A	В	С	D	E	F	G	Н	1	J	K	L	М	N
	1	Country	Talent	Infrastructure	Operating Environment	Research	Development	Government	Commercial	Total score	Region	Cluster	Income group	Political reg	ime
	2	United States of Ame	100	94.02	64.56	100	100	77.39	100	100	Americas	Power players	High	Liberal demo	ocracy
ko,	3	China	16.51	100	91.57	71.42	79.97	94.87	44.02	62.92	Asia-Pacific	Power players	Upper middle	Closed auto	cracy
	4	United Kingdom	39.65	71.43	74.65	36.5	25.03	82.82	18.91	40.93	Europe	Traditional champions	High	Liberal demo	ocracy
	5	Canada	31.28	77.05	93.94	30.67	25.78	100	14.88	40.19	Americas	Traditional champions	High	Liberal demo	ocracy
	6	Israel	35.76	67.58	82.44	32.63	27.96	43.91	27.33	39.89	Middle East	Rising stars	High	Liberal demo	ocracy
	7	Singapore	39.38	84.3	43.15	37.67	22.55	79.82	15.07	38.67	Asia-Pacific	Rising stars	High	Electoral de	mocracy
	8	South Korea	14.54	85.23	68.86	26.66	77.25	87.5	5.41	38.6	Asia-Pacific	Rising stars	High	Liberal demo	ocracy
	9	The Netherlands	33.83	81.99	88.05	25.54	30.17	62.35	4.97	36.35	Europe	Rising stars	High	Liberal demo	ocracy
	10	Germany	27.63	77.22	70.22	35.84	24.79	84.65	8.29	36.04	Europe	Traditional champions	High	Liberal demo	ocracy
	11	France	28.32	77.15	80.02	25.48	21.44	91.2	7.65	34.42	Europe	Traditional champions	High	Liberal demo	ocracy
	12	Australia	25.43	63.43	61.23	32.63	41.15	82.11	6.72	33.86	Asia-Pacific	Rising stars	High	Liberal demo	ocracy
	13	Ireland	29.93	89.5	70.15	16.79	30.85	69.44	3.94	33.04	Europe	Rising stars	High	Liberal demo	ocracy
	14	Finland	24.99	71.6	78.76	25.21	18.32	85.99	4.64	31.36	Europe	Rising stars	High	Liberal demo	ocracy
	15	Denmark	27.07	74.08	85.39	26.01	8.92	74.23	3.46	30.87	Europe	Rising stars	High	Liberal demo	ocracy
	16	Luxembourg	21.66	94.88	66.96	19.39	19.95	66.69	4.68	30.73	Europe	Wakingup	High	Liberal demo	ocracy
	17	Japan	15.18	84.58	57.53	22.51	34.47	71.96	7.31	30.53	Asia-Pacific	Risingstars	High	Liberal demo	ocracy
	18	India	45.27	33.91	77.3	18.92	30.86	58.83	7.39	30.36	Asia-Pacific	Wakingup	Lower middle	Electoral au	tocracy
	19	Switzerland	25.63	78.43	44.14	38.24	23.11	12.18	7.76	30.25	Europe	Risingstars	High	Liberal demo	ocracy
	20	Sweden	28.21	75.19	66.77	27.61	17.81	40.35	4.51	29.85	Europe	Wakingup	High	Liberal demo	ocracy
	21	Hong Kong	17.56	96.11	59.5	31.51	8.63	33.29	5.3	29.11	Asia-Pacific	Wakingup	High	Electoral de	mocracy
	22	Spain	17.61	73.32	75.36	18.6	10.87	91.28	3.08	26.95	Europe	Rising stars	High	Liberal demo	ocracy
	23	Austria	16.97	64.49	76.3	23.56	17.81	72.14	3.08	26.89	Europe	Wakingup	High	Electoral de	mocracy
	24	Estonia	18.74	63.65	88.67	11.75	9.31	72.08	12.51	26.6	Europe	Wakingup	High	Liberal demo	ocracy
	25	Taiwan	12.34	77.86	56.67	25.71	19.99	55.97	2.53	25.79	Asia-Pacific	Wakingup	High	Liberal demo	ocracy
	26	Norway	27.61	76.2	36.65	21.18	13.56	59.05	3.95	25.77	Europe	Wakingup	High	Liberal demo	ocracy
	27	Saudi Arabia	4.49	70.8	100	13.63	14.38	91.63	4.73	25.6	Middle East	Wakingup	High	Closed auto	cracy
	28	Belgium	15.17	65.1	64.08	22.15	19.81	63.58	5.31	25.52	Europe	Wakingup	High	Liberal demo	ocracy
	29	Poland	14.21	70.96	99.56	10.6	9.09	78.14	2.25	25.2	Europe	Wakingup	High	Electoral de	mocracy
	30	Slovenia	13.02	72.06	94.55	19.1	1.06	80.38	0.61	25.19	Europe	Wakingup	High	Electoral de	mocracy
	31	New Zealand	23.3	69.78	90.35	12.23	5.96	47.62	2.49	24.88	Asia-Pacific	Wakingup	High	Liberal demo	ocracy
	32	Italy	11.09	64.76	83.25	20.3	14.66	61.43	2.64	24.45	Europe	Wakingup	High	Liberal demo	ocracy
	33	Russia	12.46	62.59	52.85	14.21	19.48	90.4	1.38	21.99	Europe	Wakingup	Upper middle	Electoral au	tocracy
	34	Malta	15.87	67.12	70.96	5.96	11.72	70.49	4.3	21.85	Europe	Wakingup	High	Electoral de	mocracy
	35	United Arab Emirate	2.65	79.16	72.12	5.13	15.53	81.38	3.22	21.17	Middle East	Wakingup	High	Closed auto	cracy
	36	Portugal	13.43	64.2	80.66	8.96	3.92	70.69	2.05	20.89	Europe	Wakingup	High	Electoral de	mocracy
	37	Czech Republic	11.11	64.26	76.97	11.26	2.7		1.75	20.31	Europe	Wakingup	High	Electoral de	mocracy
	38	Iceland	18.45	72.45	41.19		0.19		5.74	19.81	Europe	Wakingup	High	Liberal demo	ocracy
	39		14.3	63.19	80.67	3.22	6.18		1.77	19.59	Europe	Wakingup	High	Electoral de	mocracy
		Brazil	13.46	62.61	72.82		5.07	67.72	1.36		Americas	Wakingup	Upper middle		
	41	Greece	7.62	55.44	83.58	15.12	2.21	22.15	0.92	17.33	Europe	Waking up	High	Liberal demo	ocracy

SOURCE: (Meleshenko 2023)